YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Comparison of Leakage Flow and Rotordynamic Characteristics for Two Types of Labyrinth Seals With Baffles

    Source: Journal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 009::page 091008-1
    Author:
    Zhang, Yuanqiao
    ,
    Li, Jun
    ,
    Li, Zhigang
    ,
    Yan, Xin
    DOI: 10.1115/1.4048053
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Cavity separation baffles can decrease the circumferential swirl intensity of labyrinth seals and increase the seals' rotordynamic characteristics. Compared with conventional baffles, the bristle packs of brush seal baffles can contact the rotor directly, thereby further reducing the swirl intensity of the seal cavity. This paper, using the numerical model combining a multifrequency elliptical whirling orbit model, a porous medium model, and transient Reynolds-averaged Navier–Stokes (RANS) solutions, compares the leakage flow and rotordynamic characteristics of a labyrinth seal with brush-seal baffles (LSBSB) and a labyrinth seal with conventional baffles (LSCB). Ideal air flows into the seal at an inlet preswirl velocity of 0 m/s (or 60 m/s or 100 m/s), total pressure of 690 kPa, and temperature of 14 °C. The outlet static pressure is 100 kPa and the rotational speed is 7500 r/min (surface speed of 66.8 m/s) or 15,000 r/min (surface speed of 133.5 m/s). Numerical results show that the LSBSB possesses the slightly less leakage flow rate than the LSCB due to the flow resistance of the bristle pack to the fluid. Compared with the LSCB, the LSBSB shows a higher positive effective stiffness (Keff) at all considered vibration frequencies and a higher effective damping (Ceff) for most vibration frequencies. What is more, the crossover frequency (fc0) of the LSBSB is significantly lower than that of the LSCB, which means that the LSBSB has a wider frequency range offering positive effective damping. The increasing inlet preswirl velocity and rotational speed only slightly affect the Keff for both seals. The Ceff of two seals decreases as the inlet preswirl velocity rises, especially for the LSCB. The Ceff of the LSCB slightly decreases because of the increasing rotational speed. In contrast, the Ceff of the LSBSB is not sensitive to the changes in rotational speed. In a word, the LSBSB possesses superior rotordynamic performance to the LSCB. Note that this work also investigates the leakage flow and rotordynamic characteristics a labyrinth seal with inclined baffles (LSIB) under the condition of u0 = 60 m/s and n = 15,000 r/min. The inclined baffles of the LSIB are same as the backing plates of LSBSB baffles. The LSIB has rotordynamic coefficients almost equal to the LSCB. Hence, the reason why the LSBSB possesses better rotordynamic performance than that of the LSCB is the flow resistance of bristle packs of brush seal baffles, not the inclination direction variation of baffles.
    • Download: (1.705Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Comparison of Leakage Flow and Rotordynamic Characteristics for Two Types of Labyrinth Seals With Baffles

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4274869
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorZhang, Yuanqiao
    contributor authorLi, Jun
    contributor authorLi, Zhigang
    contributor authorYan, Xin
    date accessioned2022-02-04T22:05:57Z
    date available2022-02-04T22:05:57Z
    date copyright8/26/2020 12:00:00 AM
    date issued2020
    identifier issn0742-4795
    identifier otherjam_87_11_111008.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274869
    description abstractCavity separation baffles can decrease the circumferential swirl intensity of labyrinth seals and increase the seals' rotordynamic characteristics. Compared with conventional baffles, the bristle packs of brush seal baffles can contact the rotor directly, thereby further reducing the swirl intensity of the seal cavity. This paper, using the numerical model combining a multifrequency elliptical whirling orbit model, a porous medium model, and transient Reynolds-averaged Navier–Stokes (RANS) solutions, compares the leakage flow and rotordynamic characteristics of a labyrinth seal with brush-seal baffles (LSBSB) and a labyrinth seal with conventional baffles (LSCB). Ideal air flows into the seal at an inlet preswirl velocity of 0 m/s (or 60 m/s or 100 m/s), total pressure of 690 kPa, and temperature of 14 °C. The outlet static pressure is 100 kPa and the rotational speed is 7500 r/min (surface speed of 66.8 m/s) or 15,000 r/min (surface speed of 133.5 m/s). Numerical results show that the LSBSB possesses the slightly less leakage flow rate than the LSCB due to the flow resistance of the bristle pack to the fluid. Compared with the LSCB, the LSBSB shows a higher positive effective stiffness (Keff) at all considered vibration frequencies and a higher effective damping (Ceff) for most vibration frequencies. What is more, the crossover frequency (fc0) of the LSBSB is significantly lower than that of the LSCB, which means that the LSBSB has a wider frequency range offering positive effective damping. The increasing inlet preswirl velocity and rotational speed only slightly affect the Keff for both seals. The Ceff of two seals decreases as the inlet preswirl velocity rises, especially for the LSCB. The Ceff of the LSCB slightly decreases because of the increasing rotational speed. In contrast, the Ceff of the LSBSB is not sensitive to the changes in rotational speed. In a word, the LSBSB possesses superior rotordynamic performance to the LSCB. Note that this work also investigates the leakage flow and rotordynamic characteristics a labyrinth seal with inclined baffles (LSIB) under the condition of u0 = 60 m/s and n = 15,000 r/min. The inclined baffles of the LSIB are same as the backing plates of LSBSB baffles. The LSIB has rotordynamic coefficients almost equal to the LSCB. Hence, the reason why the LSBSB possesses better rotordynamic performance than that of the LSCB is the flow resistance of bristle packs of brush seal baffles, not the inclination direction variation of baffles.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNumerical Comparison of Leakage Flow and Rotordynamic Characteristics for Two Types of Labyrinth Seals With Baffles
    typeJournal Paper
    journal volume142
    journal issue9
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4048053
    journal fristpage091008-1
    journal lastpage091008-11
    page11
    treeJournal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian