YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Spray Flame Characteristics of Bio-Derived Fuels in a Simulated Gas Turbine Burner

    Source: Journal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 008::page 081009-1
    Author:
    Panchasara, Heena
    ,
    Kolhe, Pankaj S.
    ,
    Agrawal, Ajay K.
    DOI: 10.1115/1.4047782
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Fuel injection plays an important role in liquid-fueled gas turbine combustion. The strong interdependence of liquid breakup and atomization, turbulent dispersion of these droplets, droplet evaporation, and fuel–air mixing make the spray modeling an extremely challenging task. The physical processes are even more difficult to predict for alternative fuels with different thermophysical properties. In this study, spray flames of unheated and preheated vegetable oil (VO) produced by an air-blast (AB) atomizer in a swirl stabilized combustor are investigated experimentally. Phase Doppler particle analyzer (PDPA) is used to measure the instantaneous diameter and axial velocity of droplets at different axial and radial locations in both flames. Experiments are conducted at an equivalence ratio of 0.79 and atomizing air to liquid ratio by a mass of 2.5 to obtain stable VO flames. Radial profiles of mean axial velocity and Sauter mean diameter (SMD) are presented to show the effect of fuel preheating. Joint probability density functions (joint PDF) are presented to show the correlation between droplet diameter and axial velocity. Results are analyzed to show that both sprays exhibit self-similar droplet diameter distributions at different axial and radial locations when normalized properly. Thus, the vast amount of PDPA data in the spray can be reduced to simple distribution functions. A method to reconstruct the joint PDF from experimentally determined distribution functions is presented. We envision that the joint PDF approach outlined in this study could be implemented in high-fidelity computational fluid dynamic models to improve spray predictions in future studies.
    • Download: (4.343Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Spray Flame Characteristics of Bio-Derived Fuels in a Simulated Gas Turbine Burner

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4274737
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorPanchasara, Heena
    contributor authorKolhe, Pankaj S.
    contributor authorAgrawal, Ajay K.
    date accessioned2022-02-04T22:01:46Z
    date available2022-02-04T22:01:46Z
    date copyright7/31/2020 12:00:00 AM
    date issued2020
    identifier issn0742-4795
    identifier othergtp-20-1080.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274737
    description abstractFuel injection plays an important role in liquid-fueled gas turbine combustion. The strong interdependence of liquid breakup and atomization, turbulent dispersion of these droplets, droplet evaporation, and fuel–air mixing make the spray modeling an extremely challenging task. The physical processes are even more difficult to predict for alternative fuels with different thermophysical properties. In this study, spray flames of unheated and preheated vegetable oil (VO) produced by an air-blast (AB) atomizer in a swirl stabilized combustor are investigated experimentally. Phase Doppler particle analyzer (PDPA) is used to measure the instantaneous diameter and axial velocity of droplets at different axial and radial locations in both flames. Experiments are conducted at an equivalence ratio of 0.79 and atomizing air to liquid ratio by a mass of 2.5 to obtain stable VO flames. Radial profiles of mean axial velocity and Sauter mean diameter (SMD) are presented to show the effect of fuel preheating. Joint probability density functions (joint PDF) are presented to show the correlation between droplet diameter and axial velocity. Results are analyzed to show that both sprays exhibit self-similar droplet diameter distributions at different axial and radial locations when normalized properly. Thus, the vast amount of PDPA data in the spray can be reduced to simple distribution functions. A method to reconstruct the joint PDF from experimentally determined distribution functions is presented. We envision that the joint PDF approach outlined in this study could be implemented in high-fidelity computational fluid dynamic models to improve spray predictions in future studies.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSpray Flame Characteristics of Bio-Derived Fuels in a Simulated Gas Turbine Burner
    typeJournal Paper
    journal volume142
    journal issue8
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4047782
    journal fristpage081009-1
    journal lastpage081009-24
    page24
    treeJournal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian