YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Tradeoff Assessments for Part Load Controlled Cooling Air in Stationary Gas Turbines

    Source: Journal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 010::page 0101008-1
    Author:
    Woelki, Dominik
    ,
    Peitsch, Dieter
    DOI: 10.1115/1.4048452
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The demand for flexible part load operation of stationary gas turbines requires the simultaneous design for sufficient efficiency and lifetime. Both can be addressed by the secondary air system. This paper presents investigations on the concepts of cooling air reduction in off-design, aiming for tradeoffs between fuel burn and turbine blade life. The considered lifetime mechanisms are creep and oxidation. In addition, the effects on emissions from the combustion are outlined. The reference gas turbine is a generic gas turbine in the 300 MW power output segment. The focus is on the first two stages of the four-stage turbine. All simulations are performed by application of a coupled model that essentially connects gas turbine performance with a secondary air system network model. This coupled model is now extended with blade life evaluation and emission models. The results contain tradeoffs for operating points at base and part load. For example, the combined cooling air control of stage 1 rotor blade and stage 2 vane offers savings up to 0.5% fuel flow at 60% of base load in a combined cycle application. This saving is at the expense of creep life. However, some operating points could even operate at higher blade temperatures in order to improve life regarding hot corrosion. Furthermore, generic sensitivities of controlled secondary air supply to cooling layers and hot gas ingestion are discussed. Overall, the presented trades mark promising potentials of modulated secondary air system concepts from a technical point of view.
    • Download: (1.709Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Tradeoff Assessments for Part Load Controlled Cooling Air in Stationary Gas Turbines

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4274712
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorWoelki, Dominik
    contributor authorPeitsch, Dieter
    date accessioned2022-02-04T22:00:57Z
    date available2022-02-04T22:00:57Z
    date copyright9/25/2020 12:00:00 AM
    date issued2020
    identifier issn0742-4795
    identifier othergtp_142_10_101008.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274712
    description abstractThe demand for flexible part load operation of stationary gas turbines requires the simultaneous design for sufficient efficiency and lifetime. Both can be addressed by the secondary air system. This paper presents investigations on the concepts of cooling air reduction in off-design, aiming for tradeoffs between fuel burn and turbine blade life. The considered lifetime mechanisms are creep and oxidation. In addition, the effects on emissions from the combustion are outlined. The reference gas turbine is a generic gas turbine in the 300 MW power output segment. The focus is on the first two stages of the four-stage turbine. All simulations are performed by application of a coupled model that essentially connects gas turbine performance with a secondary air system network model. This coupled model is now extended with blade life evaluation and emission models. The results contain tradeoffs for operating points at base and part load. For example, the combined cooling air control of stage 1 rotor blade and stage 2 vane offers savings up to 0.5% fuel flow at 60% of base load in a combined cycle application. This saving is at the expense of creep life. However, some operating points could even operate at higher blade temperatures in order to improve life regarding hot corrosion. Furthermore, generic sensitivities of controlled secondary air supply to cooling layers and hot gas ingestion are discussed. Overall, the presented trades mark promising potentials of modulated secondary air system concepts from a technical point of view.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleTradeoff Assessments for Part Load Controlled Cooling Air in Stationary Gas Turbines
    typeJournal Paper
    journal volume142
    journal issue10
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4048452
    journal fristpage0101008-1
    journal lastpage0101008-9
    page9
    treeJournal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian