YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Parameter Identification of a Strongly Nonlinear Rotor-Bearing System Based on Reconstructed Constant Response Tests

    Source: Journal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 008::page 081004-1
    Author:
    Zhang, Genbei
    ,
    Zang, Chaoping
    ,
    Friswell, Michael I.
    DOI: 10.1115/1.4047783
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A strongly nonlinear rotor-bearing system often has multiple solutions under harmonic excitations and jump phenomena. For example, a hardening nonlinearity may include a jump-down in the acceleration process and jump-up in the deceleration process. It is challenging to measure all of these multiple responses and establish an accurate dynamic model from experimental data to predict these phenomena. This paper used a fixed frequency test method to measure all of these multiple responses under harmonic excitations and developed a novel strategy to characterize and identify nonlinearities in a strongly nonlinear rotor-bearing system based on reconstructing constant response tests from fixed frequency test data. The fixed frequency tests are achieved by monotonically increasing the voltage applied to the exciter at a fixed frequency and using the force drop-out phenomenon through the resonance to control the force applied to the structure. This test method could measure multivalued response curves of a strongly nonlinear rotor-bearing system in a nonrotating state. The constant response tests could be reconstructed from these multivalued response curves. The relationship of equivalent stiffness versus displacement can be established, and hence, the nonlinear stiffness is characterized and identified from constant response tests. A rotor-bearing system with a strongly nonlinear support is used to demonstrate the method, and the nonlinear support stiffness parameters are identified and validated in a nonrotating state. The identified nonlinear rotor-bearing model also could predict the jump phenomena in the acceleration or deceleration process. The results demonstrate the feasibility and effectiveness of the approach, and also show the potential for practical applications in engineering.
    • Download: (3.568Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Parameter Identification of a Strongly Nonlinear Rotor-Bearing System Based on Reconstructed Constant Response Tests

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4274690
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorZhang, Genbei
    contributor authorZang, Chaoping
    contributor authorFriswell, Michael I.
    date accessioned2022-02-04T22:00:18Z
    date available2022-02-04T22:00:18Z
    date copyright7/31/2020 12:00:00 AM
    date issued2020
    identifier issn0742-4795
    identifier othergtp_142_08_081009.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274690
    description abstractA strongly nonlinear rotor-bearing system often has multiple solutions under harmonic excitations and jump phenomena. For example, a hardening nonlinearity may include a jump-down in the acceleration process and jump-up in the deceleration process. It is challenging to measure all of these multiple responses and establish an accurate dynamic model from experimental data to predict these phenomena. This paper used a fixed frequency test method to measure all of these multiple responses under harmonic excitations and developed a novel strategy to characterize and identify nonlinearities in a strongly nonlinear rotor-bearing system based on reconstructing constant response tests from fixed frequency test data. The fixed frequency tests are achieved by monotonically increasing the voltage applied to the exciter at a fixed frequency and using the force drop-out phenomenon through the resonance to control the force applied to the structure. This test method could measure multivalued response curves of a strongly nonlinear rotor-bearing system in a nonrotating state. The constant response tests could be reconstructed from these multivalued response curves. The relationship of equivalent stiffness versus displacement can be established, and hence, the nonlinear stiffness is characterized and identified from constant response tests. A rotor-bearing system with a strongly nonlinear support is used to demonstrate the method, and the nonlinear support stiffness parameters are identified and validated in a nonrotating state. The identified nonlinear rotor-bearing model also could predict the jump phenomena in the acceleration or deceleration process. The results demonstrate the feasibility and effectiveness of the approach, and also show the potential for practical applications in engineering.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleParameter Identification of a Strongly Nonlinear Rotor-Bearing System Based on Reconstructed Constant Response Tests
    typeJournal Paper
    journal volume142
    journal issue8
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4047783
    journal fristpage081004-1
    journal lastpage081004-8
    page8
    treeJournal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian