YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental and Numerical Study of Supersonic Non-ideal Flows for Organic Rankine Cycle Applications

    Source: Journal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 008::page 081007-1
    Author:
    Robertson, Miles
    ,
    Newton, Peter
    ,
    Chen, Tao
    ,
    Costall, Aaron
    ,
    Martinez-Botas, Ricardo
    DOI: 10.1115/1.4046758
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The organic Rankine cycle (ORC) is low-grade heat recovery technology, for sources as diverse as geothermal, industrial, and vehicle waste heat. The working fluids used within these systems often display significant real-gas effects, especially in proximity of the thermodynamic critical point. Three-dimensional (3D) computational fluid dynamics (CFD) is commonly used for performance prediction and flow field analysis within expanders, but experimental validation with real gases is scarce within the literature. This paper therefore presents a dense-gas blowdown facility constructed at Imperial College London, for experimentally validating numerical simulations of these fluids. The system-level design process for the blowdown rig is described, including the sizing and specification of major components. Tests with refrigerant R1233zd(E) are run for multiple inlet pressures, against a nitrogen baseline case. CFD simulations are performed, with the refrigerant modeled by ideal gas, Peng–Robinson, and Helmholtz energy equations of state. It is shown that increases in fluid model fidelity lead to reduced deviation between simulation and experiment. Maximum and mean discrepancies of 9.59% and 8.12% in nozzle pressure ratio with the Helmholtz energy EoS are reported. This work demonstrates an over-prediction of pressure ratio and power output within commercial CFD packages, for turbomachines operating in non-ideal fluid environments. This suggests a need for further development and experimental validation of CFD simulations for highly non-ideal flows. The data contained within this paper are therefore of vital importance for the future validation and development of CFD methods for dense-gas turbomachinery.
    • Download: (2.324Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental and Numerical Study of Supersonic Non-ideal Flows for Organic Rankine Cycle Applications

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4274688
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorRobertson, Miles
    contributor authorNewton, Peter
    contributor authorChen, Tao
    contributor authorCostall, Aaron
    contributor authorMartinez-Botas, Ricardo
    date accessioned2022-02-04T22:00:15Z
    date available2022-02-04T22:00:15Z
    date copyright7/31/2020 12:00:00 AM
    date issued2020
    identifier issn0742-4795
    identifier othergtp_142_08_081007.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274688
    description abstractThe organic Rankine cycle (ORC) is low-grade heat recovery technology, for sources as diverse as geothermal, industrial, and vehicle waste heat. The working fluids used within these systems often display significant real-gas effects, especially in proximity of the thermodynamic critical point. Three-dimensional (3D) computational fluid dynamics (CFD) is commonly used for performance prediction and flow field analysis within expanders, but experimental validation with real gases is scarce within the literature. This paper therefore presents a dense-gas blowdown facility constructed at Imperial College London, for experimentally validating numerical simulations of these fluids. The system-level design process for the blowdown rig is described, including the sizing and specification of major components. Tests with refrigerant R1233zd(E) are run for multiple inlet pressures, against a nitrogen baseline case. CFD simulations are performed, with the refrigerant modeled by ideal gas, Peng–Robinson, and Helmholtz energy equations of state. It is shown that increases in fluid model fidelity lead to reduced deviation between simulation and experiment. Maximum and mean discrepancies of 9.59% and 8.12% in nozzle pressure ratio with the Helmholtz energy EoS are reported. This work demonstrates an over-prediction of pressure ratio and power output within commercial CFD packages, for turbomachines operating in non-ideal fluid environments. This suggests a need for further development and experimental validation of CFD simulations for highly non-ideal flows. The data contained within this paper are therefore of vital importance for the future validation and development of CFD methods for dense-gas turbomachinery.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExperimental and Numerical Study of Supersonic Non-ideal Flows for Organic Rankine Cycle Applications
    typeJournal Paper
    journal volume142
    journal issue8
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4046758
    journal fristpage081007-1
    journal lastpage081007-10
    page10
    treeJournal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian