YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Commissioning of a Combined Hot-Streak and Swirl Profile Generator in a Transonic Turbine Test Facility

    Source: Journal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 003::page 031008-1
    Author:
    Adams, Maxwell G.
    ,
    Povey, Thomas
    ,
    Hall, Benjamin F.
    ,
    Cardwell, David N.
    ,
    Chana, Kam S.
    ,
    Beard, Paul F.
    DOI: 10.1115/1.4044224
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: By enhancing the premixing of fuel and air prior to combustion, recently developed lean-burn combustor systems have led to reduced NOx and particulate emissions in gas turbines. Lean-burn combustor exit flows are typically characterized by nonuniformities in total temperature, or so-called hot-streaks, swirling velocity profiles, and high turbulence intensity. While these systems improve combustor performance, the exiting flow-field presents significant challenges to the aerothermal performance of the downstream turbine. This paper presents the commissioning of a new fully annular lean-burn combustor simulator for use in the Oxford Turbine Research Facility (OTRF), a transonic rotating facility capable of matching nondimensional engine conditions. The combustor simulator can deliver engine-representative turbine inlet conditions featuring swirl and hot-streaks either separately or simultaneously. To the best of our knowledge, this simulator is the first of its kind to be implemented in a rotating turbine test facility.The combustor simulator was experimentally commissioned in two stages. The first stage of commissioning experiments was conducted using a bespoke facility exhausting to atmospheric conditions (Hall and Povey, 2015, “Experimental Study of Non-Reacting Low NOx Combustor Simulator for Scaled Turbine Experiments,” ASME Paper No. GT2015-43530.) and included area surveys of the generated temperature and swirl profiles. The survey data confirmed that the simulator performed as designed, reproducing the key features of a lean-burn combustor. However, due to the hot and cold air mixing process occurring at lower Reynolds number in the facility, there was uncertainty concerning the degree to which the measured temperature profile represented that in OTRF. The second stage of commissioning experiments was conducted with the simulator installed in the OTRF. Measurements of the total temperature field at turbine inlet and of the high-pressure (HP) nozzle guide vane (NGV) loading distributions were obtained and compared to measurements with uniform inlet conditions. The experimental survey results were compared to unsteady numerical predictions of the simulator at both atmospheric and OTRF conditions. A high level of agreement was demonstrated, indicating that the Reynolds number effects associated with the change to OTRF conditions were small. Finally, data from the atmospheric test facility and the OTRF were combined with the numerical predictions to provide an inlet boundary condition for numerical simulation of the test turbine stage. The NGV loading measurements show good agreement with the numerical predictions, providing validation of the stage inlet boundary condition imposed. The successful commissioning of the simulator in the OTRF will enable future experimental studies of lean-burn combustor–turbine interaction.
    • Download: (4.940Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Commissioning of a Combined Hot-Streak and Swirl Profile Generator in a Transonic Turbine Test Facility

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4274653
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorAdams, Maxwell G.
    contributor authorPovey, Thomas
    contributor authorHall, Benjamin F.
    contributor authorCardwell, David N.
    contributor authorChana, Kam S.
    contributor authorBeard, Paul F.
    date accessioned2022-02-04T21:59:10Z
    date available2022-02-04T21:59:10Z
    date copyright1/29/2020 12:00:00 AM
    date issued2020
    identifier issn0742-4795
    identifier othergtp_142_03_031008.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274653
    description abstractBy enhancing the premixing of fuel and air prior to combustion, recently developed lean-burn combustor systems have led to reduced NOx and particulate emissions in gas turbines. Lean-burn combustor exit flows are typically characterized by nonuniformities in total temperature, or so-called hot-streaks, swirling velocity profiles, and high turbulence intensity. While these systems improve combustor performance, the exiting flow-field presents significant challenges to the aerothermal performance of the downstream turbine. This paper presents the commissioning of a new fully annular lean-burn combustor simulator for use in the Oxford Turbine Research Facility (OTRF), a transonic rotating facility capable of matching nondimensional engine conditions. The combustor simulator can deliver engine-representative turbine inlet conditions featuring swirl and hot-streaks either separately or simultaneously. To the best of our knowledge, this simulator is the first of its kind to be implemented in a rotating turbine test facility.The combustor simulator was experimentally commissioned in two stages. The first stage of commissioning experiments was conducted using a bespoke facility exhausting to atmospheric conditions (Hall and Povey, 2015, “Experimental Study of Non-Reacting Low NOx Combustor Simulator for Scaled Turbine Experiments,” ASME Paper No. GT2015-43530.) and included area surveys of the generated temperature and swirl profiles. The survey data confirmed that the simulator performed as designed, reproducing the key features of a lean-burn combustor. However, due to the hot and cold air mixing process occurring at lower Reynolds number in the facility, there was uncertainty concerning the degree to which the measured temperature profile represented that in OTRF. The second stage of commissioning experiments was conducted with the simulator installed in the OTRF. Measurements of the total temperature field at turbine inlet and of the high-pressure (HP) nozzle guide vane (NGV) loading distributions were obtained and compared to measurements with uniform inlet conditions. The experimental survey results were compared to unsteady numerical predictions of the simulator at both atmospheric and OTRF conditions. A high level of agreement was demonstrated, indicating that the Reynolds number effects associated with the change to OTRF conditions were small. Finally, data from the atmospheric test facility and the OTRF were combined with the numerical predictions to provide an inlet boundary condition for numerical simulation of the test turbine stage. The NGV loading measurements show good agreement with the numerical predictions, providing validation of the stage inlet boundary condition imposed. The successful commissioning of the simulator in the OTRF will enable future experimental studies of lean-burn combustor–turbine interaction.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleCommissioning of a Combined Hot-Streak and Swirl Profile Generator in a Transonic Turbine Test Facility
    typeJournal Paper
    journal volume142
    journal issue3
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4044224
    journal fristpage031008-1
    journal lastpage031008-16
    page16
    treeJournal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian