YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Theoretical Analyses of Heat Balance in a Diesel/Natural Gas Dual-Fuel Engine at Low and Medium Loads Based on Experimental Values

    Source: Journal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 005
    Author:
    Wang, Zhongshu
    ,
    Du, Guizhi
    ,
    Li, Ming
    ,
    Xu, Yun
    ,
    Zhang, Fangyuan
    DOI: 10.1115/1.4046760
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In order to propose the control strategies based on exergy to realize efficient and energy-saving operation of the engine, the energy and exergy balance under sensitive boundary conditions were analyzed with the first and second laws of thermodynamics on a six-cylinders, four strokes, turbocharged, intercooled, and high-pressure common rail diesel/natural gas (NG) dual-fuel engine in this paper. The results depicted that the thermal efficiency and exergy efficiency decrease with the increase of NG percentage energy substitution rate (PES). Compared with other conditions, at medium load, 1978 rpm and 90% PES, the exergy destruction caused by irreversibility process including mixing combustion, heat transfer and mechanical friction reaches 72.33%. With the advance of diesel injection time (Tinj), thermal efficiency and energy fraction of heat transfer increase first and then decrease. However, diesel injection pressure (Pinj) has little effect on improving energy utilization. Compared with single diesel injection, appropriate multiple diesel injection can improve combustion performance and energy utilization. When the first Tinj is 35 deg CA BTDC and second Tinj is 25 deg CA BTDC, nearly 50% of the energy lost in heat transfer can be converted into useful work. The lost exergy can be reduced by choosing appreciate Tinj and Pinj, adding exhaust gas recirculation (EGR) to reduce in-cylinder temperature to improve combustion and using thermal insulation materials to reduce heat transfer or using the lost heat in other processes such as preheating intake air and producing the hot water or steam of external consumption to reduce the exergy destruction.
    • Download: (2.201Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Theoretical Analyses of Heat Balance in a Diesel/Natural Gas Dual-Fuel Engine at Low and Medium Loads Based on Experimental Values

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4274407
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorWang, Zhongshu
    contributor authorDu, Guizhi
    contributor authorLi, Ming
    contributor authorXu, Yun
    contributor authorZhang, Fangyuan
    date accessioned2022-02-04T14:48:17Z
    date available2022-02-04T14:48:17Z
    date copyright2020/04/29/
    date issued2020
    identifier issn0742-4795
    identifier othergtp_142_05_051010.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274407
    description abstractIn order to propose the control strategies based on exergy to realize efficient and energy-saving operation of the engine, the energy and exergy balance under sensitive boundary conditions were analyzed with the first and second laws of thermodynamics on a six-cylinders, four strokes, turbocharged, intercooled, and high-pressure common rail diesel/natural gas (NG) dual-fuel engine in this paper. The results depicted that the thermal efficiency and exergy efficiency decrease with the increase of NG percentage energy substitution rate (PES). Compared with other conditions, at medium load, 1978 rpm and 90% PES, the exergy destruction caused by irreversibility process including mixing combustion, heat transfer and mechanical friction reaches 72.33%. With the advance of diesel injection time (Tinj), thermal efficiency and energy fraction of heat transfer increase first and then decrease. However, diesel injection pressure (Pinj) has little effect on improving energy utilization. Compared with single diesel injection, appropriate multiple diesel injection can improve combustion performance and energy utilization. When the first Tinj is 35 deg CA BTDC and second Tinj is 25 deg CA BTDC, nearly 50% of the energy lost in heat transfer can be converted into useful work. The lost exergy can be reduced by choosing appreciate Tinj and Pinj, adding exhaust gas recirculation (EGR) to reduce in-cylinder temperature to improve combustion and using thermal insulation materials to reduce heat transfer or using the lost heat in other processes such as preheating intake air and producing the hot water or steam of external consumption to reduce the exergy destruction.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleTheoretical Analyses of Heat Balance in a Diesel/Natural Gas Dual-Fuel Engine at Low and Medium Loads Based on Experimental Values
    typeJournal Paper
    journal volume142
    journal issue5
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4046760
    page51010
    treeJournal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian