YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Optimization of a Radial Turbine for Pulsating Flows

    Source: Journal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 005
    Author:
    Liu, Zheng
    ,
    Copeland, Colin
    DOI: 10.1115/1.4046235
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A turbocharger turbine is exposed to pulsating flow conditions when it is connected to an engine exhaust system due to the opening and closing of the exhaust valves. However, many radial turbines are designed and tested under steady-state conditions without taking into account these unsteady exhaust flows. In order to seek the optimal aerodynamic design of a radial flow turbine (RFT) under pulsating flow conditions, the present research utilizes a numerical simulation approach to optimize the blade shape of a small-scale mixed flow turbine (MFT) under 50 Hz pulses. This corresponds to a four-stroke, three-cylinder engine rotating at 2000 rpm. In order to understand how a less computationally intensive, steady-state optimization compares, the blade shape was also optimized using the peak power point of the pulse. Three turbine features were modified during the optimization process, including blade cone angle, blade axial location, and blade camber angles. The optimization was carried out using a computational fluid dynamics (CFD)–genetic algorithm (GA) coupled approach, targeting at maximizing both energy-weighted efficiency and energy output during a predefined pulse period. To ensure that the new design maintains a similar matching to the engine, the maximum deviation of turbine swallowing capacity is controlled to within ±5% of the baseline for all new blade designs. The design that achieves the maximum pulse cycle-averaged efficiency was produced from unsteady optimization, with a performance benefit of 0.66%. The unsteady optimization also produced a blade shape that delivers the maximum energy output, with an improvement of 5.42%.
    • Download: (4.272Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Optimization of a Radial Turbine for Pulsating Flows

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4274402
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorLiu, Zheng
    contributor authorCopeland, Colin
    date accessioned2022-02-04T14:48:09Z
    date available2022-02-04T14:48:09Z
    date copyright2020/04/29/
    date issued2020
    identifier issn0742-4795
    identifier othergtp_142_05_051009.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274402
    description abstractA turbocharger turbine is exposed to pulsating flow conditions when it is connected to an engine exhaust system due to the opening and closing of the exhaust valves. However, many radial turbines are designed and tested under steady-state conditions without taking into account these unsteady exhaust flows. In order to seek the optimal aerodynamic design of a radial flow turbine (RFT) under pulsating flow conditions, the present research utilizes a numerical simulation approach to optimize the blade shape of a small-scale mixed flow turbine (MFT) under 50 Hz pulses. This corresponds to a four-stroke, three-cylinder engine rotating at 2000 rpm. In order to understand how a less computationally intensive, steady-state optimization compares, the blade shape was also optimized using the peak power point of the pulse. Three turbine features were modified during the optimization process, including blade cone angle, blade axial location, and blade camber angles. The optimization was carried out using a computational fluid dynamics (CFD)–genetic algorithm (GA) coupled approach, targeting at maximizing both energy-weighted efficiency and energy output during a predefined pulse period. To ensure that the new design maintains a similar matching to the engine, the maximum deviation of turbine swallowing capacity is controlled to within ±5% of the baseline for all new blade designs. The design that achieves the maximum pulse cycle-averaged efficiency was produced from unsteady optimization, with a performance benefit of 0.66%. The unsteady optimization also produced a blade shape that delivers the maximum energy output, with an improvement of 5.42%.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOptimization of a Radial Turbine for Pulsating Flows
    typeJournal Paper
    journal volume142
    journal issue5
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4046235
    page51009
    treeJournal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian