YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Three-Dimensional Thermo-Hydraulic Analysis of Solar Air Heater With Equilateral Prism-Shaped Rib Roughness

    Source: Journal of Solar Energy Engineering:;2020:;volume( 142 ):;issue: 005
    Author:
    Ahmad, Inzamam
    ,
    Khan, N. H.
    ,
    Hassan, M. A.
    ,
    Paswan, M. K.
    DOI: 10.1115/1.4046088
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Thermal transport and flow friction characteristics due to roughness on the absorber plate of solar air heater are evaluated by applying three-dimensional finite volume based code. Renormalization group (RNG) k–ɛ model is employed to capture the turbulent nature of the flow. The effect of equilateral prism-shaped rib roughness geometrical parameters in terms of relative roughness height (e/D) and relative roughness pitch (p/e) on heat transfer and flow friction is analyzed. Further, the effect of flow parameter, Re in the range of 4000–18,000 is also explored. Results are elucidated in terms of average Nusselt number, friction factor, turbulent kinetic energy, and eddy dissipation. Results are compared with a smooth absorber plate solar air heater. Thermo-hydraulic performance of the roughened solar air heater is analyzed. Noteworthy augmentation in heat transport is obtained. The thermal enhancement factor is calculated for optimal performance and found to vary from 1.7 to 3.5. However, friction factor and pressure loss for roughened plate is significantly higher than its smooth counterpart. The pressure drop across the test section increases with the rise in roughness height due to flow obstruction. A minimum value of the friction factor enhancement ratio worth 2.13 is obtained. Enhancement in thermal transport and pressure losses are combined by introducing a thermo-hydraulic performance factor (THHP). For the range of parameters investigated, the optimum value of the thermo-hydraulic performance factor is found to be 3.41. Correlations for average Nusselt number and friction factor are offered at the end.
    • Download: (2.549Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Three-Dimensional Thermo-Hydraulic Analysis of Solar Air Heater With Equilateral Prism-Shaped Rib Roughness

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4274317
    Collections
    • Journal of Solar Energy Engineering

    Show full item record

    contributor authorAhmad, Inzamam
    contributor authorKhan, N. H.
    contributor authorHassan, M. A.
    contributor authorPaswan, M. K.
    date accessioned2022-02-04T14:45:40Z
    date available2022-02-04T14:45:40Z
    date copyright2020/02/07/
    date issued2020
    identifier issn0199-6231
    identifier othersol_142_5_051001.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274317
    description abstractThermal transport and flow friction characteristics due to roughness on the absorber plate of solar air heater are evaluated by applying three-dimensional finite volume based code. Renormalization group (RNG) k–ɛ model is employed to capture the turbulent nature of the flow. The effect of equilateral prism-shaped rib roughness geometrical parameters in terms of relative roughness height (e/D) and relative roughness pitch (p/e) on heat transfer and flow friction is analyzed. Further, the effect of flow parameter, Re in the range of 4000–18,000 is also explored. Results are elucidated in terms of average Nusselt number, friction factor, turbulent kinetic energy, and eddy dissipation. Results are compared with a smooth absorber plate solar air heater. Thermo-hydraulic performance of the roughened solar air heater is analyzed. Noteworthy augmentation in heat transport is obtained. The thermal enhancement factor is calculated for optimal performance and found to vary from 1.7 to 3.5. However, friction factor and pressure loss for roughened plate is significantly higher than its smooth counterpart. The pressure drop across the test section increases with the rise in roughness height due to flow obstruction. A minimum value of the friction factor enhancement ratio worth 2.13 is obtained. Enhancement in thermal transport and pressure losses are combined by introducing a thermo-hydraulic performance factor (THHP). For the range of parameters investigated, the optimum value of the thermo-hydraulic performance factor is found to be 3.41. Correlations for average Nusselt number and friction factor are offered at the end.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThree-Dimensional Thermo-Hydraulic Analysis of Solar Air Heater With Equilateral Prism-Shaped Rib Roughness
    typeJournal Paper
    journal volume142
    journal issue5
    journal titleJournal of Solar Energy Engineering
    identifier doi10.1115/1.4046088
    page51001
    treeJournal of Solar Energy Engineering:;2020:;volume( 142 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian