YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Note on the Comparative Analysis Between Rectangular and Modified Duct Heat Exchanger

    Source: Journal of Heat Transfer:;2020:;volume( 142 ):;issue: 004
    Author:
    Kumar, Rajneesh
    ,
    Goel, Varun
    ,
    Kumar, Anoop
    DOI: 10.1115/1.4045755
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The plate fin heat exchangers usually have either rectangular or triangular shaped flow passage. In comparison to triangular flow passage, rectangular flow passage gives comparatively higher heat transfer at the cost of higher pumping power. In the present investigation, flow passage is modified by rounding the corner of triangular passage to investigate the heat and flow characteristics of air flowing through it. Comparison of performance between modified and rectangular flow passage has also been presented and discussed. The radius of curvature of the rounded corner has been kept constant with value of 0.49 times duct height (H). The dimple was also fabricated at the inner side of the flow passage and arranged in rectangular array. Distance between them was defined by two different dimensionless parameters, relative transverse width (x/h), and relative streamwise length (z/h), whereas, dimensionless height of the protrusion is defined by relative dimple height (h/D). Noticeable increment in both heat transfer and friction factor has been observed by modifying the duct corners and 2.98 times increment in Nusselt number resulted due to dimples in modified duct for h/D, x/h, and y/h value of 0.44, 10, and 10, respectively, in comparison to smooth duct at Reynolds number of 19,500. For similar combination of roughness parameters, highest frictional penalty was estimated with value of 4.46 times that of the smooth duct at Reynolds number of 4400. Additionally, the comparative assessment of heat transfer enhancement (Nuenh), frictional penalty (fpenalty), and thermohydraulic performance index (THPi) has also been carried out to understand the suitability of round cornered duct. In comparison to protruded rectangular duct, 28% higher THPi is obtained in modified duct under similar conditions.
    • Download: (1.583Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Note on the Comparative Analysis Between Rectangular and Modified Duct Heat Exchanger

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4274258
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorKumar, Rajneesh
    contributor authorGoel, Varun
    contributor authorKumar, Anoop
    date accessioned2022-02-04T14:43:59Z
    date available2022-02-04T14:43:59Z
    date copyright2020/02/20/
    date issued2020
    identifier issn0022-1481
    identifier otherht_142_04_041901.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274258
    description abstractThe plate fin heat exchangers usually have either rectangular or triangular shaped flow passage. In comparison to triangular flow passage, rectangular flow passage gives comparatively higher heat transfer at the cost of higher pumping power. In the present investigation, flow passage is modified by rounding the corner of triangular passage to investigate the heat and flow characteristics of air flowing through it. Comparison of performance between modified and rectangular flow passage has also been presented and discussed. The radius of curvature of the rounded corner has been kept constant with value of 0.49 times duct height (H). The dimple was also fabricated at the inner side of the flow passage and arranged in rectangular array. Distance between them was defined by two different dimensionless parameters, relative transverse width (x/h), and relative streamwise length (z/h), whereas, dimensionless height of the protrusion is defined by relative dimple height (h/D). Noticeable increment in both heat transfer and friction factor has been observed by modifying the duct corners and 2.98 times increment in Nusselt number resulted due to dimples in modified duct for h/D, x/h, and y/h value of 0.44, 10, and 10, respectively, in comparison to smooth duct at Reynolds number of 19,500. For similar combination of roughness parameters, highest frictional penalty was estimated with value of 4.46 times that of the smooth duct at Reynolds number of 4400. Additionally, the comparative assessment of heat transfer enhancement (Nuenh), frictional penalty (fpenalty), and thermohydraulic performance index (THPi) has also been carried out to understand the suitability of round cornered duct. In comparison to protruded rectangular duct, 28% higher THPi is obtained in modified duct under similar conditions.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Note on the Comparative Analysis Between Rectangular and Modified Duct Heat Exchanger
    typeJournal Paper
    journal volume142
    journal issue4
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4045755
    page41901
    treeJournal of Heat Transfer:;2020:;volume( 142 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian