YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Heat Transfer and Fluid Flow Characteristics of a Turbulent Dual Jet Impinging on a Wavy Surface

    Source: Journal of Thermal Science and Engineering Applications:;2020:;volume( 012 ):;issue: 004
    Author:
    Singh, Tej Pratap
    ,
    Kumar, Amitesh
    ,
    Satapathy, Ashok Kumar
    DOI: 10.1115/1.4045882
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A simple and effective technique is proposed to enhance the heat transfer rate significantly. The current study deals with the analysis of a fluid flow and thermal characteristics of a turbulent dual jet impinging on a wavy surface. The surface area of the wall has been varied by considering different wavy profiles. The amplitude of the wavy surface is varied between 0.1 and 0.7 with an interval of 0.1. The number of cycles and the offset ratio (OR) are fixed to 10 and 7, respectively, thus, providing a complete parametric analysis of flow characteristics and thermal characteristics of the turbulent dual jet. The decay of maximum streamwise velocity, the variation of bottom wall pressure, and the variation of local heat flux and local Nusselt number have been computed. The variation of the bottom wall temperature for adiabatic wavy wall boundary condition for various amplitudes are also presented in this paper. It is found that the pressure decreases in the recirculation region when the amplitude increases. There is a sudden drop in pressure in the recirculation region when the wavy surface is present as compared with the dual jet with a plane wall surface and this drop goes on increasing as the amplitude increases. The wavy surface provides a favorable condition for the flow which results in the increased flow strength. The increase in the flow strength ultimately enhances the heat transfer rate. But, the increase in heat transfer is not monotonous. The heat transfer rate increases till the amplitude 0.5 thereafter it decreases. A maximum increase of 12% in the heat transfer rate is observed at A = 0.5. It is hoped that the present study opens a new line for the industries which deal with the cooling phenomenon.
    • Download: (1.394Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Heat Transfer and Fluid Flow Characteristics of a Turbulent Dual Jet Impinging on a Wavy Surface

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4274165
    Collections
    • Journal of Thermal Science and Engineering Applications

    Show full item record

    contributor authorSingh, Tej Pratap
    contributor authorKumar, Amitesh
    contributor authorSatapathy, Ashok Kumar
    date accessioned2022-02-04T14:41:09Z
    date available2022-02-04T14:41:09Z
    date copyright2020/01/30/
    date issued2020
    identifier issn1948-5085
    identifier othertsea_12_4_041017.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274165
    description abstractA simple and effective technique is proposed to enhance the heat transfer rate significantly. The current study deals with the analysis of a fluid flow and thermal characteristics of a turbulent dual jet impinging on a wavy surface. The surface area of the wall has been varied by considering different wavy profiles. The amplitude of the wavy surface is varied between 0.1 and 0.7 with an interval of 0.1. The number of cycles and the offset ratio (OR) are fixed to 10 and 7, respectively, thus, providing a complete parametric analysis of flow characteristics and thermal characteristics of the turbulent dual jet. The decay of maximum streamwise velocity, the variation of bottom wall pressure, and the variation of local heat flux and local Nusselt number have been computed. The variation of the bottom wall temperature for adiabatic wavy wall boundary condition for various amplitudes are also presented in this paper. It is found that the pressure decreases in the recirculation region when the amplitude increases. There is a sudden drop in pressure in the recirculation region when the wavy surface is present as compared with the dual jet with a plane wall surface and this drop goes on increasing as the amplitude increases. The wavy surface provides a favorable condition for the flow which results in the increased flow strength. The increase in the flow strength ultimately enhances the heat transfer rate. But, the increase in heat transfer is not monotonous. The heat transfer rate increases till the amplitude 0.5 thereafter it decreases. A maximum increase of 12% in the heat transfer rate is observed at A = 0.5. It is hoped that the present study opens a new line for the industries which deal with the cooling phenomenon.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleHeat Transfer and Fluid Flow Characteristics of a Turbulent Dual Jet Impinging on a Wavy Surface
    typeJournal Paper
    journal volume12
    journal issue4
    journal titleJournal of Thermal Science and Engineering Applications
    identifier doi10.1115/1.4045882
    page41017
    treeJournal of Thermal Science and Engineering Applications:;2020:;volume( 012 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian