YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modeling Geared Turbofan and Open Rotor Engine Performance for Year-2050 Long-Range and Short-Range Aircraft

    Source: Journal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 004
    Author:
    Mastropierro, Francesco S.
    ,
    Sebastiampillai, Joshua
    ,
    Jacob, Florian
    ,
    Rolt, Andrew
    DOI: 10.1115/1.4045077
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper provides design and performance data for two envisaged year-2050 engines: a geared high bypass turbofan for intercontinental missions and a contra-rotating pusher open rotor targeting short to medium range aircraft. It defines component performance and cycle parameters, general arrangements, sizes, and weights. Reduced thrust requirements reflect expected improvements in engine and airframe technologies. Advanced simulation platforms have been developed to model the engines and details of individual components. The engines are optimized and compared with “baseline” year-2000 turbofans and an anticipated year-2025 open rotor to quantify the relative fuel-burn benefits. A preliminary scaling with year-2050 “reference” engines, highlights tradeoffs between reduced specific fuel consumption (SFC) and increased engine weight and diameter. These parameters are converted into mission fuel burn variations using linear and nonlinear trade factors (NLTF). The final turbofan has an optimized design-point bypass ratio (BPR) of 16.8, and a maximum overall pressure ratio (OPR) of 75.4, for a 31.5% TOC thrust reduction and a 46% mission fuel burn reduction per passenger kilometer compared to the respective “baseline” engine–aircraft combination. The open rotor SFC is 9.5% less than the year-2025 open rotor and 39% less than the year-2000 turbofan, while the TOC thrust increases by 8% versus the 2025 open rotor, due to assumed increase in passenger capacity. Combined with airframe improvements, the final open rotor-powered aircraft has a 59% fuel-burn reduction per passenger kilometer relative to its baseline.
    • Download: (1.666Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modeling Geared Turbofan and Open Rotor Engine Performance for Year-2050 Long-Range and Short-Range Aircraft

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4274163
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorMastropierro, Francesco S.
    contributor authorSebastiampillai, Joshua
    contributor authorJacob, Florian
    contributor authorRolt, Andrew
    date accessioned2022-02-04T14:41:06Z
    date available2022-02-04T14:41:06Z
    date copyright2020/02/03/
    date issued2020
    identifier issn0742-4795
    identifier othergtp_142_04_041016.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274163
    description abstractThis paper provides design and performance data for two envisaged year-2050 engines: a geared high bypass turbofan for intercontinental missions and a contra-rotating pusher open rotor targeting short to medium range aircraft. It defines component performance and cycle parameters, general arrangements, sizes, and weights. Reduced thrust requirements reflect expected improvements in engine and airframe technologies. Advanced simulation platforms have been developed to model the engines and details of individual components. The engines are optimized and compared with “baseline” year-2000 turbofans and an anticipated year-2025 open rotor to quantify the relative fuel-burn benefits. A preliminary scaling with year-2050 “reference” engines, highlights tradeoffs between reduced specific fuel consumption (SFC) and increased engine weight and diameter. These parameters are converted into mission fuel burn variations using linear and nonlinear trade factors (NLTF). The final turbofan has an optimized design-point bypass ratio (BPR) of 16.8, and a maximum overall pressure ratio (OPR) of 75.4, for a 31.5% TOC thrust reduction and a 46% mission fuel burn reduction per passenger kilometer compared to the respective “baseline” engine–aircraft combination. The open rotor SFC is 9.5% less than the year-2025 open rotor and 39% less than the year-2000 turbofan, while the TOC thrust increases by 8% versus the 2025 open rotor, due to assumed increase in passenger capacity. Combined with airframe improvements, the final open rotor-powered aircraft has a 59% fuel-burn reduction per passenger kilometer relative to its baseline.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleModeling Geared Turbofan and Open Rotor Engine Performance for Year-2050 Long-Range and Short-Range Aircraft
    typeJournal Paper
    journal volume142
    journal issue4
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4045077
    page41016
    treeJournal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian