YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Foreign Object Impact Damage in Ceramic Matrix Composites: Experiments and Computational Predictions

    Source: Journal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 004
    Author:
    Kumar, Rajesh S.
    ,
    Mordasky, Matthew D.
    DOI: 10.1115/1.4044931
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Foreign object impact of ceramic matrix composite (CMC) materials and components in a gas turbine engine environment could be detrimental to engine performance and hence must be accounted for in the design of such components. This paper is concerned with experiments and computational modeling of foreign object impact phenomenon in silicon carbide (SiC)-based CMC. Controlled impact experiments were conducted on the CMC material using a gas-gun apparatus with spherical hardened steel projectile. The internal damage state within the CMC specimens was assessed using X-ray computed tomography scan technique. The computational modeling involved explicit dynamic finite element (FE) simulation of the impact process wherein either delamination mechanism is modeled or both ply damage and delamination mechanisms are modeled in a coupled manner. The delamination mechanism is modeled explicitly using cohesive-zone (CZ) fracture mechanics approach, whereas, the ply-damage mechanisms are modeled implicitly using simplified continuum damage mechanics approach. The simulation results were found to be in reasonable qualitative and quantitative agreement with the experimental results. Furthermore, it is shown that modeling both the ply damage and delamination mechanisms are essential to predict the correct delamination pattern even for intermediate velocity impacts that leads to predominantly delamination damage. The predictive nature of the modeling approach is demonstrated and approaches to enhance the models are also discussed.
    • Download: (6.726Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Foreign Object Impact Damage in Ceramic Matrix Composites: Experiments and Computational Predictions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4274158
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorKumar, Rajesh S.
    contributor authorMordasky, Matthew D.
    date accessioned2022-02-04T14:40:57Z
    date available2022-02-04T14:40:57Z
    date copyright2020/02/03/
    date issued2020
    identifier issn0742-4795
    identifier othergtp_142_04_041014.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274158
    description abstractForeign object impact of ceramic matrix composite (CMC) materials and components in a gas turbine engine environment could be detrimental to engine performance and hence must be accounted for in the design of such components. This paper is concerned with experiments and computational modeling of foreign object impact phenomenon in silicon carbide (SiC)-based CMC. Controlled impact experiments were conducted on the CMC material using a gas-gun apparatus with spherical hardened steel projectile. The internal damage state within the CMC specimens was assessed using X-ray computed tomography scan technique. The computational modeling involved explicit dynamic finite element (FE) simulation of the impact process wherein either delamination mechanism is modeled or both ply damage and delamination mechanisms are modeled in a coupled manner. The delamination mechanism is modeled explicitly using cohesive-zone (CZ) fracture mechanics approach, whereas, the ply-damage mechanisms are modeled implicitly using simplified continuum damage mechanics approach. The simulation results were found to be in reasonable qualitative and quantitative agreement with the experimental results. Furthermore, it is shown that modeling both the ply damage and delamination mechanisms are essential to predict the correct delamination pattern even for intermediate velocity impacts that leads to predominantly delamination damage. The predictive nature of the modeling approach is demonstrated and approaches to enhance the models are also discussed.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleForeign Object Impact Damage in Ceramic Matrix Composites: Experiments and Computational Predictions
    typeJournal Paper
    journal volume142
    journal issue4
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4044931
    page41014
    treeJournal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian