YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Adaptive Control of Microgas Turbine for Engine Degradation Compensation

    Source: Journal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 004
    Author:
    Zaccaria, Valentina
    ,
    Ferrari, Mario L.
    ,
    Kyprianidis, Konstantinos
    DOI: 10.1115/1.4044948
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Microgas turbine (MGT) engines in the range of 1–100 kW are playing a key role in distributed generation applications, due to the high reliability and quick load following that favor their integration with intermittent renewable sources. Micro-combined heat and power (CHP) systems based on gas turbine technology are obtaining a higher share in the market and are aiming at reducing the costs and increasing energy conversion efficiency. An effective control of system operating parameters during the whole engine lifetime is essential to maintain desired performance and at the same time guarantee safe operations. Because of the necessity to reduce the costs, fewer sensors are usually available than in standard industrial gas turbines, limiting the choice of control parameters. This aspect is aggravated by engine aging and deterioration phenomena that change operating performance from the expected one. In this situation, a control architecture designed for healthy operations may not be adequate anymore, because the relationship between measured parameters and unmeasured variables (e.g., turbine inlet temperature (TIT) or efficiency) varies depending on the level of engine deterioration. In this work, an adaptive control scheme is proposed to compensate the effects of engine degradation over the lifetime. Component degradation level is monitored by a diagnostic tool that estimates performance variations from the available measurements; then, the information on the gas turbine health condition is used by an observer-based model predictive controller to maintain the machine in a safe range of operation and limit the reduction in system efficiency.
    • Download: (895.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Adaptive Control of Microgas Turbine for Engine Degradation Compensation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4274152
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorZaccaria, Valentina
    contributor authorFerrari, Mario L.
    contributor authorKyprianidis, Konstantinos
    date accessioned2022-02-04T14:40:44Z
    date available2022-02-04T14:40:44Z
    date copyright2020/02/03/
    date issued2020
    identifier issn0742-4795
    identifier othergtp_142_04_041012.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274152
    description abstractMicrogas turbine (MGT) engines in the range of 1–100 kW are playing a key role in distributed generation applications, due to the high reliability and quick load following that favor their integration with intermittent renewable sources. Micro-combined heat and power (CHP) systems based on gas turbine technology are obtaining a higher share in the market and are aiming at reducing the costs and increasing energy conversion efficiency. An effective control of system operating parameters during the whole engine lifetime is essential to maintain desired performance and at the same time guarantee safe operations. Because of the necessity to reduce the costs, fewer sensors are usually available than in standard industrial gas turbines, limiting the choice of control parameters. This aspect is aggravated by engine aging and deterioration phenomena that change operating performance from the expected one. In this situation, a control architecture designed for healthy operations may not be adequate anymore, because the relationship between measured parameters and unmeasured variables (e.g., turbine inlet temperature (TIT) or efficiency) varies depending on the level of engine deterioration. In this work, an adaptive control scheme is proposed to compensate the effects of engine degradation over the lifetime. Component degradation level is monitored by a diagnostic tool that estimates performance variations from the available measurements; then, the information on the gas turbine health condition is used by an observer-based model predictive controller to maintain the machine in a safe range of operation and limit the reduction in system efficiency.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAdaptive Control of Microgas Turbine for Engine Degradation Compensation
    typeJournal Paper
    journal volume142
    journal issue4
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4044948
    page41012
    treeJournal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian