YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Noise and Nonlinearities on Thermoacoustics of Can-Annular Combustors

    Source: Journal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 004
    Author:
    Ghirardo, G.
    ,
    Moeck, J. P.
    ,
    Bothien, M. R.
    DOI: 10.1115/1.4044487
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Can-annular combustors consist of N distinct cans setup symmetrically around the axis of the gas turbine. Each can is connected to the turbine inlet by means of a transition duct. At the turbine inlet, a small gap between the neighboring transition ducts allows acoustic communication between the cans. Thermoacoustic pulsations in the cans are driven by the respective flames, but also the communication between neighboring cans through the gap plays a significant role. In this study, we focus on the effect of the background noise intensity and of the nonlinear flame saturation. We predict how usually clusters of thermoacoustic modes are unstable in the linear regime and compete with each other in the nonlinear regime, each cluster consisting of axial, azimuthal and push-pull modes. Since linear theory cannot predict the nonlinear solution, stochastic simulations are run to study the nonlinear solution in a probabilistic sense. One outcome of these simulations is the various pulsation patterns, which are in principle different from one can to the next. We recover how not only a stronger flame response in one can gives rise to the phenomenon of mode localization, but also how the nonlinearity of the flame saturation and the competition between modes have an effect on the nonlinear mode shape. We finally predict the coherence and phase between cans on the linearized system subject to noise, and compare the predictions with engine measurements, in terms of spectra of amplitude in each can and coherence and phase, observing a good match.
    • Download: (4.293Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Noise and Nonlinearities on Thermoacoustics of Can-Annular Combustors

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4274089
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorGhirardo, G.
    contributor authorMoeck, J. P.
    contributor authorBothien, M. R.
    date accessioned2022-02-04T14:38:41Z
    date available2022-02-04T14:38:41Z
    date copyright2020/01/29/
    date issued2020
    identifier issn0742-4795
    identifier othergtp_142_04_041005.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4274089
    description abstractCan-annular combustors consist of N distinct cans setup symmetrically around the axis of the gas turbine. Each can is connected to the turbine inlet by means of a transition duct. At the turbine inlet, a small gap between the neighboring transition ducts allows acoustic communication between the cans. Thermoacoustic pulsations in the cans are driven by the respective flames, but also the communication between neighboring cans through the gap plays a significant role. In this study, we focus on the effect of the background noise intensity and of the nonlinear flame saturation. We predict how usually clusters of thermoacoustic modes are unstable in the linear regime and compete with each other in the nonlinear regime, each cluster consisting of axial, azimuthal and push-pull modes. Since linear theory cannot predict the nonlinear solution, stochastic simulations are run to study the nonlinear solution in a probabilistic sense. One outcome of these simulations is the various pulsation patterns, which are in principle different from one can to the next. We recover how not only a stronger flame response in one can gives rise to the phenomenon of mode localization, but also how the nonlinearity of the flame saturation and the competition between modes have an effect on the nonlinear mode shape. We finally predict the coherence and phase between cans on the linearized system subject to noise, and compare the predictions with engine measurements, in terms of spectra of amplitude in each can and coherence and phase, observing a good match.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffect of Noise and Nonlinearities on Thermoacoustics of Can-Annular Combustors
    typeJournal Paper
    journal volume142
    journal issue4
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4044487
    page41005
    treeJournal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian