YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Micro and Nano
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Micro and Nano
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Feedstock Properties on Extrusion of High Aspect Ratio Microbi-Lumen Tubes

    Source: Journal of Micro and Nano-Manufacturing:;2020:;volume( 008 ):;issue: 001
    Author:
    Kuriakose, Sandeep
    ,
    Parenti, Paolo
    ,
    Annoni, Massimiliano
    DOI: 10.1115/1.4046096
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The micro-extrusion of feedstock is a promising and emerging technology for manufacturing very high length to thickness aspect ratio metallic microcomponents which are not feasible for conventional metal processing methodologies or commonly used feedstock processing technologies. Extrusion of high aspect ratio microcomponents using metallic feedstock confronts the challenges of achieving a continuous extrusion without any breakage, the geometrical accuracy, surface finish and structural properties for the component which are required for the micro-application, during micro-extrusion process. The type of metallic powder, powder size, type of binder, and binder properties are very decisive in making the extrusion process feasible for the micro-application. The influence of feedstock properties on micro-extrusion of high aspect ratio microcomponents are still unknown in case of micro-extrusion of feedstock. In this research work, the effect of type of feedstock on micro-extrusion is studied by extruding microbi-lumen tubes using biocompatible steel feedstocks AISI316 L and 17-4PH at two different aging states (no aging and 1.5 years aging). The geometrical features of the extruded bi-lumen tubes, surface roughness and structural properties are analyzed using three-dimensional (3D) focus variation microscopy, differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The analysis showed that feedstock type affects the feasibility of extrusion and geometrical size to a great extent. An average Sa roughness deviation from 1.73 to 4.57 μm was observed for feedstocks 17-4PH and AISI316 L. The study also confirms that binder properties and aging of the feedstocks also have to be taken into account for maintaining the surface finish and structural properties in case of metallic feedstock extrusion of high aspect ratio bi-lumen tubes.
    • Download: (3.913Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Feedstock Properties on Extrusion of High Aspect Ratio Microbi-Lumen Tubes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273896
    Collections
    • Journal of Micro and Nano

    Show full item record

    contributor authorKuriakose, Sandeep
    contributor authorParenti, Paolo
    contributor authorAnnoni, Massimiliano
    date accessioned2022-02-04T14:33:10Z
    date available2022-02-04T14:33:10Z
    date copyright2020/02/13/
    date issued2020
    identifier issn2166-0468
    identifier otherjmnm_008_01_010912.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273896
    description abstractThe micro-extrusion of feedstock is a promising and emerging technology for manufacturing very high length to thickness aspect ratio metallic microcomponents which are not feasible for conventional metal processing methodologies or commonly used feedstock processing technologies. Extrusion of high aspect ratio microcomponents using metallic feedstock confronts the challenges of achieving a continuous extrusion without any breakage, the geometrical accuracy, surface finish and structural properties for the component which are required for the micro-application, during micro-extrusion process. The type of metallic powder, powder size, type of binder, and binder properties are very decisive in making the extrusion process feasible for the micro-application. The influence of feedstock properties on micro-extrusion of high aspect ratio microcomponents are still unknown in case of micro-extrusion of feedstock. In this research work, the effect of type of feedstock on micro-extrusion is studied by extruding microbi-lumen tubes using biocompatible steel feedstocks AISI316 L and 17-4PH at two different aging states (no aging and 1.5 years aging). The geometrical features of the extruded bi-lumen tubes, surface roughness and structural properties are analyzed using three-dimensional (3D) focus variation microscopy, differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The analysis showed that feedstock type affects the feasibility of extrusion and geometrical size to a great extent. An average Sa roughness deviation from 1.73 to 4.57 μm was observed for feedstocks 17-4PH and AISI316 L. The study also confirms that binder properties and aging of the feedstocks also have to be taken into account for maintaining the surface finish and structural properties in case of metallic feedstock extrusion of high aspect ratio bi-lumen tubes.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffect of Feedstock Properties on Extrusion of High Aspect Ratio Microbi-Lumen Tubes
    typeJournal Paper
    journal volume8
    journal issue1
    journal titleJournal of Micro and Nano-Manufacturing
    identifier doi10.1115/1.4046096
    page10912
    treeJournal of Micro and Nano-Manufacturing:;2020:;volume( 008 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian