YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Condition Monitoring of Wind Turbine Planetary Gearboxes Under Different Operating Conditions

    Source: Journal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 003
    Author:
    Mauricio, Alexandre
    ,
    Sheng, Shuangwen
    ,
    Gryllias, Konstantinos
    DOI: 10.1115/1.4044683
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Digitally enhanced services for wind power could reduce operations and maintenance costs as well as the levelized cost of energy. Therefore, there is a continuous need for advanced monitoring techniques, which can exploit the opportunities of internet of things and big data analytics, revolutionizing the future of the energy sector. The heart of wind turbines is a rather complex epicyclic gearbox. Among others, extremely critical gearbox components, which are often responsible for machinery stops, are the rolling element bearings. The vibration signatures of bearings are rather weak compared to other components, such as gears, and as a result, an extended number of signal processing techniques and tools have been proposed during the last decades, focusing toward accurate, early, and on time bearing fault detection with limited false alarms and missed detections. Envelope analysis is one of the most important methodologies, where an envelope of the vibration signal is estimated usually after filtering around a frequency band excited by impacts due to the bearing faults. Different tools, such as Kurtogram, have been proposed in order to accurately select the optimum filter parameters (center frequency and bandwidth). Cyclic spectral correlation (CSC) and cyclic spectral coherence (CSCoh), based on cyclostationary analysis, have been proved as very powerful tools for condition monitoring. The monitoring techniques seem to have reached a mature level in case a machinery operates under steady speed and load. On the other hand, in case the operating conditions change, it is still unclear whether the change of the monitoring indicators is due to the change of the health of the machinery or due to the change of the operating parameters. Recently, the authors have proposed a new tool called improved envelope spectrum via feature optimization-gram (IESFOgram), which is based on CSCoh and can automatically select the filtering band. Furthermore, the CSCoh is integrated along the selected frequency band leading to an improved envelope spectrum (IES). In this paper, the performance of the tool is evaluated and further extended on cases operating under different speeds and different loads. The effectiveness of the methodology is tested and validated on the National Renewable Energy Laboratory (NREL) wind turbine gearbox vibration condition monitoring benchmarking dataset, which includes various faults with different levels of diagnostic complexity as well as various speed and load operating conditions.
    • Download: (2.395Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Condition Monitoring of Wind Turbine Planetary Gearboxes Under Different Operating Conditions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273804
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorMauricio, Alexandre
    contributor authorSheng, Shuangwen
    contributor authorGryllias, Konstantinos
    date accessioned2022-02-04T14:30:32Z
    date available2022-02-04T14:30:32Z
    date copyright2020/01/17/
    date issued2020
    identifier issn0742-4795
    identifier othergtp_142_03_031003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273804
    description abstractDigitally enhanced services for wind power could reduce operations and maintenance costs as well as the levelized cost of energy. Therefore, there is a continuous need for advanced monitoring techniques, which can exploit the opportunities of internet of things and big data analytics, revolutionizing the future of the energy sector. The heart of wind turbines is a rather complex epicyclic gearbox. Among others, extremely critical gearbox components, which are often responsible for machinery stops, are the rolling element bearings. The vibration signatures of bearings are rather weak compared to other components, such as gears, and as a result, an extended number of signal processing techniques and tools have been proposed during the last decades, focusing toward accurate, early, and on time bearing fault detection with limited false alarms and missed detections. Envelope analysis is one of the most important methodologies, where an envelope of the vibration signal is estimated usually after filtering around a frequency band excited by impacts due to the bearing faults. Different tools, such as Kurtogram, have been proposed in order to accurately select the optimum filter parameters (center frequency and bandwidth). Cyclic spectral correlation (CSC) and cyclic spectral coherence (CSCoh), based on cyclostationary analysis, have been proved as very powerful tools for condition monitoring. The monitoring techniques seem to have reached a mature level in case a machinery operates under steady speed and load. On the other hand, in case the operating conditions change, it is still unclear whether the change of the monitoring indicators is due to the change of the health of the machinery or due to the change of the operating parameters. Recently, the authors have proposed a new tool called improved envelope spectrum via feature optimization-gram (IESFOgram), which is based on CSCoh and can automatically select the filtering band. Furthermore, the CSCoh is integrated along the selected frequency band leading to an improved envelope spectrum (IES). In this paper, the performance of the tool is evaluated and further extended on cases operating under different speeds and different loads. The effectiveness of the methodology is tested and validated on the National Renewable Energy Laboratory (NREL) wind turbine gearbox vibration condition monitoring benchmarking dataset, which includes various faults with different levels of diagnostic complexity as well as various speed and load operating conditions.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleCondition Monitoring of Wind Turbine Planetary Gearboxes Under Different Operating Conditions
    typeJournal Paper
    journal volume142
    journal issue3
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4044683
    page31003
    treeJournal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian