YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Blade Vibration Stress Determination Method Based on Blade Tip Timing Simulator and Finite Element Method

    Source: Journal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 003
    Author:
    Zhang, Xiaojie
    ,
    Wang, Yanrong
    ,
    Jiang, Xianghua
    ,
    Gao, Shimin
    DOI: 10.1115/1.4045791
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Blade tip timing (BTT) measurement technology is more widely used to determine the vibrational stress of rotating blades and play an important role for blade service life prediction. The dynamic blade displacements can be measured by tip timing sensors, and then be converted to blade stress by the modal shape information from finite element method (FEM) analysis. However, there are always two uncertainties between the measured displacements by BTT and the modal shape by FEM analysis. First, the effective positions detected by sensors may shift from where they expected due to the deformation of the blade. This deviation may yield calibration factors with deceptions, which will present an inaccurate correlation for the blade stress level and the tip displacement. Second, when vibrating, blade tip would actually oscillate around the equilibrium position both in circumferential and axial direction, while the sensors can only detect the movements along the circumference direction and neglect the other. This causes the measured displacements to be different from the actual displacements. To deal with these two problems, a novel method based on the vibration amplitudes of blade tip along axial direction is proposed to identify the effective detected position. The vibration stress of the whole blade then can be determined by linking the modified displacements to the mode shape information from finite element (FE) predictions. This method is validated by a numerical BTT simulator, which is trying to simulate the actual testing process of BTT measurement. Both synchronous and asynchronous vibrations are discussed to illustrate the applicability of this method. Moreover, sensitivity analysis is performed to identify the uncertainties from the vibration amplitude and mode shape inaccuracies. Results demonstrate the great potential of the method for vibration stress determination.
    • Download: (3.888Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Blade Vibration Stress Determination Method Based on Blade Tip Timing Simulator and Finite Element Method

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273775
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorZhang, Xiaojie
    contributor authorWang, Yanrong
    contributor authorJiang, Xianghua
    contributor authorGao, Shimin
    date accessioned2022-02-04T14:29:38Z
    date available2022-02-04T14:29:38Z
    date copyright2020/01/16/
    date issued2020
    identifier issn0742-4795
    identifier othergtp_142_03_031001.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273775
    description abstractBlade tip timing (BTT) measurement technology is more widely used to determine the vibrational stress of rotating blades and play an important role for blade service life prediction. The dynamic blade displacements can be measured by tip timing sensors, and then be converted to blade stress by the modal shape information from finite element method (FEM) analysis. However, there are always two uncertainties between the measured displacements by BTT and the modal shape by FEM analysis. First, the effective positions detected by sensors may shift from where they expected due to the deformation of the blade. This deviation may yield calibration factors with deceptions, which will present an inaccurate correlation for the blade stress level and the tip displacement. Second, when vibrating, blade tip would actually oscillate around the equilibrium position both in circumferential and axial direction, while the sensors can only detect the movements along the circumference direction and neglect the other. This causes the measured displacements to be different from the actual displacements. To deal with these two problems, a novel method based on the vibration amplitudes of blade tip along axial direction is proposed to identify the effective detected position. The vibration stress of the whole blade then can be determined by linking the modified displacements to the mode shape information from finite element (FE) predictions. This method is validated by a numerical BTT simulator, which is trying to simulate the actual testing process of BTT measurement. Both synchronous and asynchronous vibrations are discussed to illustrate the applicability of this method. Moreover, sensitivity analysis is performed to identify the uncertainties from the vibration amplitude and mode shape inaccuracies. Results demonstrate the great potential of the method for vibration stress determination.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleBlade Vibration Stress Determination Method Based on Blade Tip Timing Simulator and Finite Element Method
    typeJournal Paper
    journal volume142
    journal issue3
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4045791
    page31001
    treeJournal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian