YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Utilization of Fast Response Pressure Measurements to Non-Intrusively Monitor Blade Vibration in Axial Compressors

    Source: Journal of Turbomachinery:;2020:;volume( 142 ):;issue: 003
    Author:
    Leng, Yujun
    ,
    Key, Nicole L.
    DOI: 10.1115/1.4045472
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A novel non-intrusive method has been developed to monitor rotor blade vibration using unsteady casing pressure. The present blade vibration monitoring technique utilizes casing unsteady pressure sensors that can detect the pressure waves associated with blade vibration. Spinning mode theory was used to identify the specific frequencies and nodal diameters (NDs) of the spinning pressure waves associated with the blade vibration. A dual temporal-spatial analysis method has been developed to extract the specific frequency components using Fourier transforms, and the specific ND component was extracted using a circumferential mode-fitting algorithm. An experimental study was done in the Purdue 3-stage axial research compressor to verify the new rotor blade vibration monitoring method against the blade tip timing (BTT) method. During the experiment, the compressor was swept through the resonant crossing speed corresponding to the first torsion (1T) vibratory mode of the embedded rotor, while the unsteady casing pressure data and BTT data were simultaneously acquired. Utilizing as few as two sensors, the pressure wave due to blade forced vibration was extracted. A constant scaling factor between the resultant pressure wave strength and blade deflection amplitude was calculated for two different loading conditions. The close match between blade vibration-generated pressure wave strength and blade deflection amplitude through the resonant range provides the validation for the new rotor blade vibration monitoring method. This is the first time in the open literature that blade vibration-related pressure waves have been extracted from casing pressure sensor arrays and used to quantify blade vibration.
    • Download: (1.474Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Utilization of Fast Response Pressure Measurements to Non-Intrusively Monitor Blade Vibration in Axial Compressors

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273772
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorLeng, Yujun
    contributor authorKey, Nicole L.
    date accessioned2022-02-04T14:29:33Z
    date available2022-02-04T14:29:33Z
    date copyright2020/02/20/
    date issued2020
    identifier issn0889-504X
    identifier otherturbo_142_3_031001.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273772
    description abstractA novel non-intrusive method has been developed to monitor rotor blade vibration using unsteady casing pressure. The present blade vibration monitoring technique utilizes casing unsteady pressure sensors that can detect the pressure waves associated with blade vibration. Spinning mode theory was used to identify the specific frequencies and nodal diameters (NDs) of the spinning pressure waves associated with the blade vibration. A dual temporal-spatial analysis method has been developed to extract the specific frequency components using Fourier transforms, and the specific ND component was extracted using a circumferential mode-fitting algorithm. An experimental study was done in the Purdue 3-stage axial research compressor to verify the new rotor blade vibration monitoring method against the blade tip timing (BTT) method. During the experiment, the compressor was swept through the resonant crossing speed corresponding to the first torsion (1T) vibratory mode of the embedded rotor, while the unsteady casing pressure data and BTT data were simultaneously acquired. Utilizing as few as two sensors, the pressure wave due to blade forced vibration was extracted. A constant scaling factor between the resultant pressure wave strength and blade deflection amplitude was calculated for two different loading conditions. The close match between blade vibration-generated pressure wave strength and blade deflection amplitude through the resonant range provides the validation for the new rotor blade vibration monitoring method. This is the first time in the open literature that blade vibration-related pressure waves have been extracted from casing pressure sensor arrays and used to quantify blade vibration.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleUtilization of Fast Response Pressure Measurements to Non-Intrusively Monitor Blade Vibration in Axial Compressors
    typeJournal Paper
    journal volume142
    journal issue3
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4045472
    page31001
    treeJournal of Turbomachinery:;2020:;volume( 142 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian