YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Micro and Nano
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Micro and Nano
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Debinding and Presintering of High Aspect Ratio Microbi-Lumen Tubes Produced by Extrusion of 17-4PH Feedstock

    Source: Journal of Micro and Nano-Manufacturing:;2020:;volume( 008 ):;issue: 002
    Author:
    Kuriakose, Sandeep
    ,
    Cataldo, Salvatore
    ,
    Parenti, Paolo
    ,
    Annoni, Massimiliano
    DOI: 10.1115/1.4046562
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Recent developments have showcased that micro-extrusion of feedstock can be used for manufacturing metallic microbi-lumen tubes with very high length-to-diameter aspect ratios, which are not viable by conventional metal extrusion or commonly used feedstock processing technologies like injection molding or hot pressing. The extrusion of high aspect ratio microcomponents faces the challenge of maintaining the geometrical accuracy, surface finish, and structural properties since the micro-extrusion in green state is followed by debinding and sintering operations, which result in shrinkage and variations in surface finish and structure. The stages of the process chain such as solvent/thermal debinding (TD), to remove the polymeric binder, and presintering (PS), to achieve a mild structural rigidity before the sintering, are of critical importance to achieve the surface and structural properties of high aspect ratio microparts and have not been yet studied in case of micro-extrusion of feedstock. In this study, the effect of debinding and PS on surface and structural properties of bi-lumen tubes processed at different extrusion conditions is discussed. Surface roughness of the tubes is analyzed using three-dimensional microscopy, and structural properties are studied using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The debinding and PS experiments on extruded microbi-lumen tubes retained very good surfaces integrity without any cracks or defects. The study shows that the interactions of extrusion temperature and extrusion velocity influence the surface finish of the extruded tubes the most. The sintered bi-lumen samples showed a good areal surface finish, Sa of 2.21 μm, which is near to the green state value confirming the suitability of the applied debinding and PS parameters.
    • Download: (2.194Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Debinding and Presintering of High Aspect Ratio Microbi-Lumen Tubes Produced by Extrusion of 17-4PH Feedstock

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273727
    Collections
    • Journal of Micro and Nano

    Show full item record

    contributor authorKuriakose, Sandeep
    contributor authorCataldo, Salvatore
    contributor authorParenti, Paolo
    contributor authorAnnoni, Massimiliano
    date accessioned2022-02-04T14:28:27Z
    date available2022-02-04T14:28:27Z
    date copyright2020/03/27/
    date issued2020
    identifier issn2166-0468
    identifier otherjmnm_008_02_024506.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273727
    description abstractRecent developments have showcased that micro-extrusion of feedstock can be used for manufacturing metallic microbi-lumen tubes with very high length-to-diameter aspect ratios, which are not viable by conventional metal extrusion or commonly used feedstock processing technologies like injection molding or hot pressing. The extrusion of high aspect ratio microcomponents faces the challenge of maintaining the geometrical accuracy, surface finish, and structural properties since the micro-extrusion in green state is followed by debinding and sintering operations, which result in shrinkage and variations in surface finish and structure. The stages of the process chain such as solvent/thermal debinding (TD), to remove the polymeric binder, and presintering (PS), to achieve a mild structural rigidity before the sintering, are of critical importance to achieve the surface and structural properties of high aspect ratio microparts and have not been yet studied in case of micro-extrusion of feedstock. In this study, the effect of debinding and PS on surface and structural properties of bi-lumen tubes processed at different extrusion conditions is discussed. Surface roughness of the tubes is analyzed using three-dimensional microscopy, and structural properties are studied using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The debinding and PS experiments on extruded microbi-lumen tubes retained very good surfaces integrity without any cracks or defects. The study shows that the interactions of extrusion temperature and extrusion velocity influence the surface finish of the extruded tubes the most. The sintered bi-lumen samples showed a good areal surface finish, Sa of 2.21 μm, which is near to the green state value confirming the suitability of the applied debinding and PS parameters.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDebinding and Presintering of High Aspect Ratio Microbi-Lumen Tubes Produced by Extrusion of 17-4PH Feedstock
    typeJournal Paper
    journal volume8
    journal issue2
    journal titleJournal of Micro and Nano-Manufacturing
    identifier doi10.1115/1.4046562
    page24506
    treeJournal of Micro and Nano-Manufacturing:;2020:;volume( 008 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian