YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering and Science in Medical Diagnostics and Therapy
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering and Science in Medical Diagnostics and Therapy
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Brain Computer Interface Classifiers for Semi-Autonomous Wheelchair Using Fuzzy Logic Optimization

    Source: Journal of Engineering and Science in Medical Diagnostics and Therapy:;2020:;volume( 003 ):;issue: 002
    Author:
    Nandikolla, Vidya K.
    ,
    Van Leeuwen, Travis
    DOI: 10.1115/1.4046311
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A brain–computer interface (BCI)-based controller bridges the gap between smart wheelchairs and physically impaired persons with severe conditions. This paper presents the design of a hybrid BCI controller with six classifiers using an electroencephalogram (EEG) headset to detect hand motor imagery (MI) and jaw electromyography (EMG) signals. A BCI controller and semi-autonomous system is developed to control a smart wheelchair in conjunction with its semi-autonomous capabilities. For data acquisition, an openvibe system and a commercial grade EEG headset are used. A multiple common spatial pattern (CSP) filter and Linear discriminant analysis (LDA) classifier system is used to process and classify the user's brain activity. To convert the classifier data into a signal that is compatible with the semi-autonomous wheelchair system, a fuzzy logic controller (FLC) is integrated in LabVIEW. Subjects are trained to use the BCI system and the classifier profiles are optimized for each user and the results are analyzed for this study. The openvibe “Replay” script and recorded training data are used to evaluate the performance of the controller scheme. For each subject, positive, negative, and false-positive executions are recorded. During the initial testing phase, the positive rates for subjects were strong, but false-positive rates were too high to be used. Therefore, the design is iterated by changing the rules of the FLC and configuration of the LabVIEW script. The configuration with the best positive rates for turn executions is chosen where the average positive rate for turning is 0.68 for subject 1 and 0.64 for subject 2.
    • Download: (3.941Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Brain Computer Interface Classifiers for Semi-Autonomous Wheelchair Using Fuzzy Logic Optimization

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273645
    Collections
    • Journal of Engineering and Science in Medical Diagnostics and Therapy

    Show full item record

    contributor authorNandikolla, Vidya K.
    contributor authorVan Leeuwen, Travis
    date accessioned2022-02-04T14:25:58Z
    date available2022-02-04T14:25:58Z
    date copyright2020/03/06/
    date issued2020
    identifier issn2572-7958
    identifier otherjesmdt_003_02_021101.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273645
    description abstractA brain–computer interface (BCI)-based controller bridges the gap between smart wheelchairs and physically impaired persons with severe conditions. This paper presents the design of a hybrid BCI controller with six classifiers using an electroencephalogram (EEG) headset to detect hand motor imagery (MI) and jaw electromyography (EMG) signals. A BCI controller and semi-autonomous system is developed to control a smart wheelchair in conjunction with its semi-autonomous capabilities. For data acquisition, an openvibe system and a commercial grade EEG headset are used. A multiple common spatial pattern (CSP) filter and Linear discriminant analysis (LDA) classifier system is used to process and classify the user's brain activity. To convert the classifier data into a signal that is compatible with the semi-autonomous wheelchair system, a fuzzy logic controller (FLC) is integrated in LabVIEW. Subjects are trained to use the BCI system and the classifier profiles are optimized for each user and the results are analyzed for this study. The openvibe “Replay” script and recorded training data are used to evaluate the performance of the controller scheme. For each subject, positive, negative, and false-positive executions are recorded. During the initial testing phase, the positive rates for subjects were strong, but false-positive rates were too high to be used. Therefore, the design is iterated by changing the rules of the FLC and configuration of the LabVIEW script. The configuration with the best positive rates for turn executions is chosen where the average positive rate for turning is 0.68 for subject 1 and 0.64 for subject 2.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleBrain Computer Interface Classifiers for Semi-Autonomous Wheelchair Using Fuzzy Logic Optimization
    typeJournal Paper
    journal volume3
    journal issue2
    journal titleJournal of Engineering and Science in Medical Diagnostics and Therapy
    identifier doi10.1115/1.4046311
    page21101
    treeJournal of Engineering and Science in Medical Diagnostics and Therapy:;2020:;volume( 003 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian