YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Multi-Wave Vibration Caused by Flutter Instability and Nonlinear Tip-Shroud Friction

    Source: Journal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 002
    Author:
    Gross, Johann
    ,
    Krack, Malte
    DOI: 10.1115/1.4044884
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Measurements revealed the contribution of multiple traveling waves to the flutter vibrations of bladed disks. Saturated flutter vibration, whether in this multi-wave or in its better-understood single-wave form, is a nonlinear phenomenon. However, it is still not understood of what physical origin the relevant nonlinearities are, and under what conditions single-wave or multi-wave flutter vibration occurs. Recent theoretical work suggests that multi-wave flutter vibration can be explained by strongly nonlinear frictional interblade coupling. The verity of this hypothesis is strictly limited by the simplicity of the considered model, namely, a cyclic chain of seven oscillators with frictional coupling and rather unrealistic aeroelastic behavior. In this work, it is demonstrated that nonlinear dynamical contact interactions at tip-shrouds are a likely cause for the observed multi-wave flutter vibration. To this end, a more realistic structural turbine blade row model with a more realistic aeroelastic behavior is considered. Some insight into its intriguing dynamics, dependence of limit states on initial conditions, and eigenvalue placement is provided. For instance, it is shown that there is an intimate relation between internal combination resonance conditions of certain traveling wave modes and the spectral content of single- and multi-wave flutter oscillations.
    • Download: (2.922Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Multi-Wave Vibration Caused by Flutter Instability and Nonlinear Tip-Shroud Friction

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273627
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorGross, Johann
    contributor authorKrack, Malte
    date accessioned2022-02-04T14:25:29Z
    date available2022-02-04T14:25:29Z
    date copyright2020/01/13/
    date issued2020
    identifier issn0742-4795
    identifier othergtp_142_02_021013.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273627
    description abstractMeasurements revealed the contribution of multiple traveling waves to the flutter vibrations of bladed disks. Saturated flutter vibration, whether in this multi-wave or in its better-understood single-wave form, is a nonlinear phenomenon. However, it is still not understood of what physical origin the relevant nonlinearities are, and under what conditions single-wave or multi-wave flutter vibration occurs. Recent theoretical work suggests that multi-wave flutter vibration can be explained by strongly nonlinear frictional interblade coupling. The verity of this hypothesis is strictly limited by the simplicity of the considered model, namely, a cyclic chain of seven oscillators with frictional coupling and rather unrealistic aeroelastic behavior. In this work, it is demonstrated that nonlinear dynamical contact interactions at tip-shrouds are a likely cause for the observed multi-wave flutter vibration. To this end, a more realistic structural turbine blade row model with a more realistic aeroelastic behavior is considered. Some insight into its intriguing dynamics, dependence of limit states on initial conditions, and eigenvalue placement is provided. For instance, it is shown that there is an intimate relation between internal combination resonance conditions of certain traveling wave modes and the spectral content of single- and multi-wave flutter oscillations.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMulti-Wave Vibration Caused by Flutter Instability and Nonlinear Tip-Shroud Friction
    typeJournal Paper
    journal volume142
    journal issue2
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4044884
    page21013
    treeJournal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian