YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Rotordynamic Characteristics Prediction for Hole-Pattern Seals Using Computational Fluid Dynamics

    Source: Journal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 002
    Author:
    Thorat, Manish R.
    ,
    Hardin, James R.
    DOI: 10.1115/1.4044760
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The experimental setup for a hole-pattern seal is modeled using computational fluid dynamics (CFD) and results compared with measured test data and bulk flow model (ISOTSEAL) predictions. The inlet swirl boundary condition for prior CFD analyses of this test case have either been assumed or based on pitot-tube measurements. In this paper, the validity of each is investigated by including radial inlet nozzles with the inlet plenum in the model geometry. A transient mesh deformation technique with multiple frequency journal excitations is used to determine frequency-dependent rotordynamic coefficients. This multifrequency excitation method is validated against single frequency sinusoidal journal excitation. An empirical limit on the number of frequencies that can be packed in a multifrequency excitation signal to provide a reasonable estimate of rotordynamic coefficients is provided. Rotordynamic coefficients estimated using CFD compare well with measured rotordynamic coefficients. For the given test data, the ISOTSEAL bulk flow model does not provide good correlation for cross-coupled stiffness if the measured swirl ratio at the inlet of the seal is used in the prediction. However, improvement in correlation for cross-coupled stiffness is obtained if the swirl ratio found from CFD analysis is used in the bulk flow model, indicating that pitot-tube measurements of swirl may not be accurate.
    • Download: (6.783Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Rotordynamic Characteristics Prediction for Hole-Pattern Seals Using Computational Fluid Dynamics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273475
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorThorat, Manish R.
    contributor authorHardin, James R.
    date accessioned2022-02-04T14:20:42Z
    date available2022-02-04T14:20:42Z
    date copyright2020/01/08/
    date issued2020
    identifier issn0742-4795
    identifier othergtp_142_02_021004.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273475
    description abstractThe experimental setup for a hole-pattern seal is modeled using computational fluid dynamics (CFD) and results compared with measured test data and bulk flow model (ISOTSEAL) predictions. The inlet swirl boundary condition for prior CFD analyses of this test case have either been assumed or based on pitot-tube measurements. In this paper, the validity of each is investigated by including radial inlet nozzles with the inlet plenum in the model geometry. A transient mesh deformation technique with multiple frequency journal excitations is used to determine frequency-dependent rotordynamic coefficients. This multifrequency excitation method is validated against single frequency sinusoidal journal excitation. An empirical limit on the number of frequencies that can be packed in a multifrequency excitation signal to provide a reasonable estimate of rotordynamic coefficients is provided. Rotordynamic coefficients estimated using CFD compare well with measured rotordynamic coefficients. For the given test data, the ISOTSEAL bulk flow model does not provide good correlation for cross-coupled stiffness if the measured swirl ratio at the inlet of the seal is used in the prediction. However, improvement in correlation for cross-coupled stiffness is obtained if the swirl ratio found from CFD analysis is used in the bulk flow model, indicating that pitot-tube measurements of swirl may not be accurate.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleRotordynamic Characteristics Prediction for Hole-Pattern Seals Using Computational Fluid Dynamics
    typeJournal Paper
    journal volume142
    journal issue2
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4044760
    page21004
    treeJournal of Engineering for Gas Turbines and Power:;2020:;volume( 142 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian