YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Self-Healing of Wind Turbine Blades by Pressurized Delivery of Healing Agent

    Source: Journal of Energy Resources Technology:;2020:;volume( 142 ):;issue: 008
    Author:
    Shen, Rulin
    ,
    Ren, Meijian
    ,
    Amano, Ryoichi S.
    ,
    Long, Mingjun
    ,
    Gong, Yanling
    DOI: 10.1115/1.4045928
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Self-healing is a promising way to solve the difficulty in wind turbine blades repair, yet the embedded healing agent may have a disadvantage because of being exposed to outdoor for a long time. Pressurized delivery of the healing agent in real-time when the blade is damaged may be the solution to avoid the disadvantage healing agent. In this paper, the healing agent was pumped to the damaged area by a peristaltic pump, and the healing effect was evaluated by the recovery rate of the residual flexural strength after impact and the image of ultrasonic C-scan. To evaluate the healing effect of different damage degrees, 10 J, 15 J, 20 J, and 25 J impact energies were applied. The fluid tracer test showed that the healing agent could penetrate in the damaged areas after the impact of 15 J, 20 J and 25 J, while the three-point bending test revealed that the healing efficiency was the highest with 20 J (85.2%). The ultrasonic C-scan and optical photos of the sample showed that the images of the healing area were almost consistent with those of the un-impacted area, indicating that the damaged area is healed well. Based on the success of plate samples, the self-healing of the wind turbine blade-scale prototype was then carried out. Twenty-joule impact was exerted on the blade prototype, and the healing agent was pumped to the damaged area using the peristaltic pump similar to the same procedure as that of the plate specimen. Ultrasonic C-scan and optical images of the damaged area showed that the prototype was healed well in comparison with those of the plate specimens, indicating that the application of pressurized delivery of the healing agent system in the self-healing of wind turbine blade prototype was successful.
    • Download: (703.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Self-Healing of Wind Turbine Blades by Pressurized Delivery of Healing Agent

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273432
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorShen, Rulin
    contributor authorRen, Meijian
    contributor authorAmano, Ryoichi S.
    contributor authorLong, Mingjun
    contributor authorGong, Yanling
    date accessioned2022-02-04T14:19:32Z
    date available2022-02-04T14:19:32Z
    date copyright2020/02/24/
    date issued2020
    identifier issn0195-0738
    identifier otherjert_142_8_081304.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273432
    description abstractSelf-healing is a promising way to solve the difficulty in wind turbine blades repair, yet the embedded healing agent may have a disadvantage because of being exposed to outdoor for a long time. Pressurized delivery of the healing agent in real-time when the blade is damaged may be the solution to avoid the disadvantage healing agent. In this paper, the healing agent was pumped to the damaged area by a peristaltic pump, and the healing effect was evaluated by the recovery rate of the residual flexural strength after impact and the image of ultrasonic C-scan. To evaluate the healing effect of different damage degrees, 10 J, 15 J, 20 J, and 25 J impact energies were applied. The fluid tracer test showed that the healing agent could penetrate in the damaged areas after the impact of 15 J, 20 J and 25 J, while the three-point bending test revealed that the healing efficiency was the highest with 20 J (85.2%). The ultrasonic C-scan and optical photos of the sample showed that the images of the healing area were almost consistent with those of the un-impacted area, indicating that the damaged area is healed well. Based on the success of plate samples, the self-healing of the wind turbine blade-scale prototype was then carried out. Twenty-joule impact was exerted on the blade prototype, and the healing agent was pumped to the damaged area using the peristaltic pump similar to the same procedure as that of the plate specimen. Ultrasonic C-scan and optical images of the damaged area showed that the prototype was healed well in comparison with those of the plate specimens, indicating that the application of pressurized delivery of the healing agent system in the self-healing of wind turbine blade prototype was successful.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSelf-Healing of Wind Turbine Blades by Pressurized Delivery of Healing Agent
    typeJournal Paper
    journal volume142
    journal issue8
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4045928
    page81304
    treeJournal of Energy Resources Technology:;2020:;volume( 142 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian