YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Specialized Strain Energy Functions for Modeling the Contribution of the Collagen Network (Waniso) to the Deformation of Soft Tissues

    Source: Journal of Applied Mechanics:;2020:;volume( 087 ):;issue: 007
    Author:
    Anssari-Benam, Afshin
    ,
    Pani, Martino
    ,
    Bucchi, Andrea
    DOI: 10.1115/1.4046894
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A popular framework in continuum mechanics modeling of soft tissues is the use of an additive split of the total strain energy function (W) into the contribution of the isotropic matrix (Wiso) and the anisotropic collagen fiber networks (Waniso): W = Wiso + Waniso. This paper presents specialized strain energy functions for the Waniso part of this additive split, in the form of Waniso(I4) or Waniso(I4, I6) for one or two fiber families, respectively, accounting for the deformation and contribution of the collagen fibers’ network. The models have their origins in the statistical mechanics treatment of chains network based on a non-Gaussian, a Gaussian, and a modified Gaussian approach. The models are applied to extant experimental stress-stretch data, across multi-scales from a single collagen molecule to the network ensemble, demonstrating an excellent agreement. Due to the direct physical structural basis of the model parameters and therefore their objectivity and uniqueness, these models are proposed as advantageous options next to the existing phenomenological continuum-based strain energy functions in the literature. In addition, and while not exploited in this paper, since the model parameters are inherent structural properties of the collagen molecular chains, they may be established a priori via imaging or molecular techniques. Therefore, the proposed models allow the important possibility of precluding the need for destructive mechanical tests and calibration a posteriori, instead of paving the way for predicting the mechanical behavior of the collagen network from pre-established structural parameters. These features render the proposed models as attractive choices for application in continuum-based modeling of collagenous soft tissues.
    • Download: (828.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Specialized Strain Energy Functions for Modeling the Contribution of the Collagen Network (Waniso) to the Deformation of Soft Tissues

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273320
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorAnssari-Benam, Afshin
    contributor authorPani, Martino
    contributor authorBucchi, Andrea
    date accessioned2022-02-04T14:16:23Z
    date available2022-02-04T14:16:23Z
    date copyright2020/05/04/
    date issued2020
    identifier issn0021-8936
    identifier otherjam_87_7_071006.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273320
    description abstractA popular framework in continuum mechanics modeling of soft tissues is the use of an additive split of the total strain energy function (W) into the contribution of the isotropic matrix (Wiso) and the anisotropic collagen fiber networks (Waniso): W = Wiso + Waniso. This paper presents specialized strain energy functions for the Waniso part of this additive split, in the form of Waniso(I4) or Waniso(I4, I6) for one or two fiber families, respectively, accounting for the deformation and contribution of the collagen fibers’ network. The models have their origins in the statistical mechanics treatment of chains network based on a non-Gaussian, a Gaussian, and a modified Gaussian approach. The models are applied to extant experimental stress-stretch data, across multi-scales from a single collagen molecule to the network ensemble, demonstrating an excellent agreement. Due to the direct physical structural basis of the model parameters and therefore their objectivity and uniqueness, these models are proposed as advantageous options next to the existing phenomenological continuum-based strain energy functions in the literature. In addition, and while not exploited in this paper, since the model parameters are inherent structural properties of the collagen molecular chains, they may be established a priori via imaging or molecular techniques. Therefore, the proposed models allow the important possibility of precluding the need for destructive mechanical tests and calibration a posteriori, instead of paving the way for predicting the mechanical behavior of the collagen network from pre-established structural parameters. These features render the proposed models as attractive choices for application in continuum-based modeling of collagenous soft tissues.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSpecialized Strain Energy Functions for Modeling the Contribution of the Collagen Network (Waniso) to the Deformation of Soft Tissues
    typeJournal Paper
    journal volume87
    journal issue7
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.4046894
    page71006
    treeJournal of Applied Mechanics:;2020:;volume( 087 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian