YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Approach to Robotic Testing of the Wrist Using Three-Dimensional Imaging and a Hybrid Testing Methodology

    Source: Journal of Biomechanical Engineering:;2020:;volume( 142 ):;issue: 006
    Author:
    Badida, Rohit
    ,
    Garcia-Lopez, Edgar
    ,
    Sise, Claire
    ,
    Moore, Douglas C.
    ,
    Crisco, Joseph J.
    DOI: 10.1115/1.4046050
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Robotic technology is increasingly used for sophisticated in vitro testing designed to understand the subtleties of joint biomechanics. Typically, the joint coordinate systems in these studies are established via palpation and digitization of anatomic landmarks. We are interested in wrist mechanics in which overlying soft tissues and indistinct bony features can introduce considerable variation in landmark localization, leading to descriptions of kinematics and kinetics that may not appropriately align with the bony anatomy. In the wrist, testing is often performed using either load or displacement control with standard material testers. However, these control modes either do not consider all six degrees-of-freedom (DOF) or reflect the nonlinear mechanical properties of the wrist joint. The development of an appropriate protocol to investigate complexities of wrist mechanics would potentially advance our understanding of normal, pathological, and artificial wrist function. In this study, we report a novel methodology for using CT imaging to generate anatomically aligned coordinate systems and a new methodology for robotic testing of wrist. The methodology is demonstrated with the testing of 9 intact cadaver specimens in 24 unique directions of wrist motion to a resultant torque of 2.0 N·m. The mean orientation of the major principal axis of range of motion (ROM) envelope was oriented 12.1 ± 2.7 deg toward ulnar flexion, which was significantly different (p < 0.001) from the anatomical flexion/extension axis. The largest wrist ROM was 98 ± 9.3 deg in the direction of ulnar flexion, 15 deg ulnar from pure flexion, consistent with previous studies [1,2]. Interestingly, the radial and ulnar components of the resultant torque were the most dominant across all directions of wrist motion. The results of this study showed that we can efficiently register anatomical coordinate systems from CT imaging space to robotic test space adaptable to any cadaveric joint experiments and demonstrated a combined load-position strategy for robotic testing of wrist.
    • Download: (1.530Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Approach to Robotic Testing of the Wrist Using Three-Dimensional Imaging and a Hybrid Testing Methodology

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273260
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorBadida, Rohit
    contributor authorGarcia-Lopez, Edgar
    contributor authorSise, Claire
    contributor authorMoore, Douglas C.
    contributor authorCrisco, Joseph J.
    date accessioned2022-02-04T14:14:39Z
    date available2022-02-04T14:14:39Z
    date copyright2020/03/27/
    date issued2020
    identifier issn0148-0731
    identifier otherbio_142_06_064501.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273260
    description abstractRobotic technology is increasingly used for sophisticated in vitro testing designed to understand the subtleties of joint biomechanics. Typically, the joint coordinate systems in these studies are established via palpation and digitization of anatomic landmarks. We are interested in wrist mechanics in which overlying soft tissues and indistinct bony features can introduce considerable variation in landmark localization, leading to descriptions of kinematics and kinetics that may not appropriately align with the bony anatomy. In the wrist, testing is often performed using either load or displacement control with standard material testers. However, these control modes either do not consider all six degrees-of-freedom (DOF) or reflect the nonlinear mechanical properties of the wrist joint. The development of an appropriate protocol to investigate complexities of wrist mechanics would potentially advance our understanding of normal, pathological, and artificial wrist function. In this study, we report a novel methodology for using CT imaging to generate anatomically aligned coordinate systems and a new methodology for robotic testing of wrist. The methodology is demonstrated with the testing of 9 intact cadaver specimens in 24 unique directions of wrist motion to a resultant torque of 2.0 N·m. The mean orientation of the major principal axis of range of motion (ROM) envelope was oriented 12.1 ± 2.7 deg toward ulnar flexion, which was significantly different (p < 0.001) from the anatomical flexion/extension axis. The largest wrist ROM was 98 ± 9.3 deg in the direction of ulnar flexion, 15 deg ulnar from pure flexion, consistent with previous studies [1,2]. Interestingly, the radial and ulnar components of the resultant torque were the most dominant across all directions of wrist motion. The results of this study showed that we can efficiently register anatomical coordinate systems from CT imaging space to robotic test space adaptable to any cadaveric joint experiments and demonstrated a combined load-position strategy for robotic testing of wrist.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAn Approach to Robotic Testing of the Wrist Using Three-Dimensional Imaging and a Hybrid Testing Methodology
    typeJournal Paper
    journal volume142
    journal issue6
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4046050
    page64501
    treeJournal of Biomechanical Engineering:;2020:;volume( 142 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian