YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Kinetics of Polyelectrolyte Gels

    Source: Journal of Applied Mechanics:;2020:;volume( 087 ):;issue: 006
    Author:
    Zhang, Haohui
    ,
    Dehghany, Mohammad
    ,
    Hu, Yuhang
    DOI: 10.1115/1.4046737
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Polyelectrolyte (PE) gels consist of crosslinked polymer networks that are grafted with ionizable groups and ionic solution. Many stimuli-responsive gels, including pH-responsive, electric-responsive, and light-responsive ones, are PE gels. Most soft biological components are also PE gels. Due to the increasing scientific interests and applications of PE gels, a comprehensive model is needed. In PE gels, not only solvent, but also ions and other small molecules all diffuse inside, and the flows of the different components are coupled. This phenomenon is called cross-diffusion, meaning the flow of one species is not only driven by its own chemical potential gradient, but also influenced by the flow of other species. In this work, we develop a rigorous nonequilibrium thermodynamics framework to study the coupled deformation and diffusion of the PE gels where cross-diffusion is emphasized and quantified. Specific forms of free energy and kinetic laws are proposed. A finite element method is developed and implemented into abaqus through a user element subroutine. The model is used to simulate the deformation of biological axon and PE gels.The numerical results are compared with experimental data. It is shown that cross-diffusion generates anomalous effects not only on the flux but also on the deformation of PE gels.
    • Download: (1.250Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Kinetics of Polyelectrolyte Gels

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4273194
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorZhang, Haohui
    contributor authorDehghany, Mohammad
    contributor authorHu, Yuhang
    date accessioned2022-02-04T14:12:48Z
    date available2022-02-04T14:12:48Z
    date copyright2020/04/09/
    date issued2020
    identifier issn0021-8936
    identifier otherjam_87_6_061010.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4273194
    description abstractPolyelectrolyte (PE) gels consist of crosslinked polymer networks that are grafted with ionizable groups and ionic solution. Many stimuli-responsive gels, including pH-responsive, electric-responsive, and light-responsive ones, are PE gels. Most soft biological components are also PE gels. Due to the increasing scientific interests and applications of PE gels, a comprehensive model is needed. In PE gels, not only solvent, but also ions and other small molecules all diffuse inside, and the flows of the different components are coupled. This phenomenon is called cross-diffusion, meaning the flow of one species is not only driven by its own chemical potential gradient, but also influenced by the flow of other species. In this work, we develop a rigorous nonequilibrium thermodynamics framework to study the coupled deformation and diffusion of the PE gels where cross-diffusion is emphasized and quantified. Specific forms of free energy and kinetic laws are proposed. A finite element method is developed and implemented into abaqus through a user element subroutine. The model is used to simulate the deformation of biological axon and PE gels.The numerical results are compared with experimental data. It is shown that cross-diffusion generates anomalous effects not only on the flux but also on the deformation of PE gels.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleKinetics of Polyelectrolyte Gels
    typeJournal Paper
    journal volume87
    journal issue6
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.4046737
    page61010
    treeJournal of Applied Mechanics:;2020:;volume( 087 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian