YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Comparison of Cylinder Pressure Measurements on a Heavy-Duty Diesel Engine Using a Switching Adapter

    Source: Journal of Engineering for Gas Turbines and Power:;2019:;volume( 141 ):;issue: 008::page 81014
    Author:
    Dempsey, Adam B.
    ,
    Seiler, Patrick J.
    ,
    Johnson, Simon
    DOI: 10.1115/1.4043408
    Publisher: American Society of Mechanical Engineers (ASME)
    Abstract: In this study, a variety of piezoelectric pressure transducer designs and mounting configurations were compared for measuring in-cylinder pressure on a heavy-duty single-cylinder diesel engine. A unique cylinder head design was used which allowed cylinder pressure to be measured simultaneously in two locations. In one location, various piezoelectric pressure transducers and mounting configurations were studied. In the other location, a Kistler water-cooled switching adapter with a piezoresistive pressure sensor was used. The switching adapter measured in-cylinder pressure during the low-pressure portion of the cycle. During the high-pressure portion of the cycle the sensor is protected from the high-pressure and high-temperature gases in the cylinder. Therefore, the piezoresistive sensor measured in-cylinder pressure highly accurately, without the impacts of short-term thermal drift, otherwise known as thermal shock. Additionally, the piezoresistive sensor is an absolute pressure sensor which does not require a baseline or “pegging” on every engine cycle. With this measurement setup, the amount of thermal shock and induced measurement variability was accurately assessed for the piezoelectric sensors. Data analysis techniques for quantifying the accuracy of a piezoelectric cylinder pressure measurement are also presented and discussed. It was observed that all the piezoelectric transducers investigated yielded very similar results regarding compression pressure, start of combustion, peak cylinder pressure, and the overall heat release rate shape. Differences emerged when studying the impact of the transducer mounting (e.g., recessed versus flush-mount). Recessed-mount transducers tended to yield a more accurate measurement of the cycle-to-cycle variability when compared to the baseline piezoresistive sensor. This is thought to be due to reduced levels of thermal shock, which can vary from cycle-to-cycle.
    • Download: (5.866Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Comparison of Cylinder Pressure Measurements on a Heavy-Duty Diesel Engine Using a Switching Adapter

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4259195
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorDempsey, Adam B.
    contributor authorSeiler, Patrick J.
    contributor authorJohnson, Simon
    date accessioned2019-09-18T09:07:45Z
    date available2019-09-18T09:07:45Z
    date copyright4/17/2019 12:00:00 AM
    date issued2019
    identifier issn0742-4795
    identifier othergtp_141_08_081014
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4259195
    description abstractIn this study, a variety of piezoelectric pressure transducer designs and mounting configurations were compared for measuring in-cylinder pressure on a heavy-duty single-cylinder diesel engine. A unique cylinder head design was used which allowed cylinder pressure to be measured simultaneously in two locations. In one location, various piezoelectric pressure transducers and mounting configurations were studied. In the other location, a Kistler water-cooled switching adapter with a piezoresistive pressure sensor was used. The switching adapter measured in-cylinder pressure during the low-pressure portion of the cycle. During the high-pressure portion of the cycle the sensor is protected from the high-pressure and high-temperature gases in the cylinder. Therefore, the piezoresistive sensor measured in-cylinder pressure highly accurately, without the impacts of short-term thermal drift, otherwise known as thermal shock. Additionally, the piezoresistive sensor is an absolute pressure sensor which does not require a baseline or “pegging” on every engine cycle. With this measurement setup, the amount of thermal shock and induced measurement variability was accurately assessed for the piezoelectric sensors. Data analysis techniques for quantifying the accuracy of a piezoelectric cylinder pressure measurement are also presented and discussed. It was observed that all the piezoelectric transducers investigated yielded very similar results regarding compression pressure, start of combustion, peak cylinder pressure, and the overall heat release rate shape. Differences emerged when studying the impact of the transducer mounting (e.g., recessed versus flush-mount). Recessed-mount transducers tended to yield a more accurate measurement of the cycle-to-cycle variability when compared to the baseline piezoresistive sensor. This is thought to be due to reduced levels of thermal shock, which can vary from cycle-to-cycle.
    publisherAmerican Society of Mechanical Engineers (ASME)
    titleComparison of Cylinder Pressure Measurements on a Heavy-Duty Diesel Engine Using a Switching Adapter
    typeJournal Paper
    journal volume141
    journal issue8
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4043408
    journal fristpage81014
    journal lastpage081014-15
    treeJournal of Engineering for Gas Turbines and Power:;2019:;volume( 141 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian