YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Energy-Based Strength Theory for Soft Elastic Membranes

    Source: Journal of Applied Mechanics:;2019:;volume( 086 ):;issue: 007::page 71008
    Author:
    Pourmodheji, Reza
    ,
    Qu, Shaoxing
    ,
    Yu, Honghui
    DOI: 10.1115/1.4043145
    Publisher: American Society of Mechanical Engineers (ASME)
    Abstract: In the previous studies by the authors and others, it was demonstrated that there are two possible defect growth modes and a characteristic material length for any soft material. For a pre-existing defect smaller than the material characteristic length, the energy is dissipated all around the defect as it grows and the critical load for the growth is independent of the defect size. For defects larger than the characteristic length, the growth is by cracking and the energy is dissipated along a plane. Thus, the critical load for the growth is size dependent and can be predicted by fracture mechanics. In this study, we apply the same energy-based argument to the failure of thin membranes, with the focus on the first growth mode that gives the maximum critical load. We assume that strain localization due to damage is the precursor to rupture, and hence, we model the corresponding zone as a through-thickness hole, with its size smaller than the material characteristic length. The defect grows when the elastic energy relaxed by the growth is enough to provide the energy needed for internal microstructure changes. This leads us to the size-independent failure conditions for membranes under the biaxial load. The conditions are expressed in terms of either two principal stretches or two principal stresses for two different types of materials. For verification, we test the theory using the published experimental data on natural and styrene-butadiene rubber. By using the experimental data from equal biaxial loading, we predict the critical principal stretch ratios and critical stresses for different biaxialities. The predictions agree well with the experimental results.
    • Download: (881.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Energy-Based Strength Theory for Soft Elastic Membranes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4258933
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorPourmodheji, Reza
    contributor authorQu, Shaoxing
    contributor authorYu, Honghui
    date accessioned2019-09-18T09:06:26Z
    date available2019-09-18T09:06:26Z
    date copyright4/19/2019 12:00:00 AM
    date issued2019
    identifier issn0021-8936
    identifier otherjam_86_7_071008
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4258933
    description abstractIn the previous studies by the authors and others, it was demonstrated that there are two possible defect growth modes and a characteristic material length for any soft material. For a pre-existing defect smaller than the material characteristic length, the energy is dissipated all around the defect as it grows and the critical load for the growth is independent of the defect size. For defects larger than the characteristic length, the growth is by cracking and the energy is dissipated along a plane. Thus, the critical load for the growth is size dependent and can be predicted by fracture mechanics. In this study, we apply the same energy-based argument to the failure of thin membranes, with the focus on the first growth mode that gives the maximum critical load. We assume that strain localization due to damage is the precursor to rupture, and hence, we model the corresponding zone as a through-thickness hole, with its size smaller than the material characteristic length. The defect grows when the elastic energy relaxed by the growth is enough to provide the energy needed for internal microstructure changes. This leads us to the size-independent failure conditions for membranes under the biaxial load. The conditions are expressed in terms of either two principal stretches or two principal stresses for two different types of materials. For verification, we test the theory using the published experimental data on natural and styrene-butadiene rubber. By using the experimental data from equal biaxial loading, we predict the critical principal stretch ratios and critical stresses for different biaxialities. The predictions agree well with the experimental results.
    publisherAmerican Society of Mechanical Engineers (ASME)
    titleEnergy-Based Strength Theory for Soft Elastic Membranes
    typeJournal Paper
    journal volume86
    journal issue7
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.4043145
    journal fristpage71008
    journal lastpage071008-11
    treeJournal of Applied Mechanics:;2019:;volume( 086 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian