YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Thermal Science and Engineering Applications
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Investigation of a Three-Phase Oscillating Heat Pipe

    Source: Journal of Thermal Science and Engineering Applications:;2019:;volume( 011 ):;issue: 006::page 61006
    Author:
    Hao, Tingting
    ,
    Ma, Hongbin
    ,
    Ma, Xuehu
    DOI: 10.1115/1.4043090
    Publisher: American Society of Mechanical Engineers (ASME)
    Abstract: This paper presents an investigation of a three-phase oscillating heat pipe (3P OHP). The working fluid in the OHP consists of phase change material (PCM) and water. During the operation, the PCM changes the phase between solid and liquid, and water changes phase between liquid and vapor. The OHP investigated herein contains three phases: solid, liquid, and vapor. Erythritol was selected as the PCM with an instant cooling effect when dissolved in water due to the high fusion heat of 340 J/g. When the working fluid flows into the evaporator section, the PCM solid phase of the working fluid can become liquid phase in the evaporator, and the PCM liquid phase of the working fluid become solid phase in the condenser. The effects of heat input ranging from 100 to 420 W, and the erythritol concentration ranging from 1 to 50 wt % on the slug oscillations, and the OHP thermal performance was investigated. Experimental results show that while the erythritol can help to increase the heat transfer performance of an OHP, the heat transfer performance depends on the erythritol concentration. With a range of 1–5 wt % concentration of erythritol/water mixtures, a maximum 10% increase in the thermal performance was observed. When the erythritol concentration of erythritol/water mixtures was increased to a range of 10–50 wt %, the thermal performance of OHPs was lower than pure water-filled OHP, and the thermal performance decreased as the erythritol concentration was further increased. In addition, visualization results showed that slug oscillation amplitudes and velocities were reduced in the OHPs with erythritol solution compared with water-filled OHP.
    • Download: (504.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Investigation of a Three-Phase Oscillating Heat Pipe

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4258915
    Collections
    • Journal of Thermal Science and Engineering Applications

    Show full item record

    contributor authorHao, Tingting
    contributor authorMa, Hongbin
    contributor authorMa, Xuehu
    date accessioned2019-09-18T09:06:21Z
    date available2019-09-18T09:06:21Z
    date copyright5/3/2019 12:00:00 AM
    date issued2019
    identifier issn1948-5085
    identifier othertsea_11_6_061006
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4258915
    description abstractThis paper presents an investigation of a three-phase oscillating heat pipe (3P OHP). The working fluid in the OHP consists of phase change material (PCM) and water. During the operation, the PCM changes the phase between solid and liquid, and water changes phase between liquid and vapor. The OHP investigated herein contains three phases: solid, liquid, and vapor. Erythritol was selected as the PCM with an instant cooling effect when dissolved in water due to the high fusion heat of 340 J/g. When the working fluid flows into the evaporator section, the PCM solid phase of the working fluid can become liquid phase in the evaporator, and the PCM liquid phase of the working fluid become solid phase in the condenser. The effects of heat input ranging from 100 to 420 W, and the erythritol concentration ranging from 1 to 50 wt % on the slug oscillations, and the OHP thermal performance was investigated. Experimental results show that while the erythritol can help to increase the heat transfer performance of an OHP, the heat transfer performance depends on the erythritol concentration. With a range of 1–5 wt % concentration of erythritol/water mixtures, a maximum 10% increase in the thermal performance was observed. When the erythritol concentration of erythritol/water mixtures was increased to a range of 10–50 wt %, the thermal performance of OHPs was lower than pure water-filled OHP, and the thermal performance decreased as the erythritol concentration was further increased. In addition, visualization results showed that slug oscillation amplitudes and velocities were reduced in the OHPs with erythritol solution compared with water-filled OHP.
    publisherAmerican Society of Mechanical Engineers (ASME)
    titleExperimental Investigation of a Three-Phase Oscillating Heat Pipe
    typeJournal Paper
    journal volume11
    journal issue6
    journal titleJournal of Thermal Science and Engineering Applications
    identifier doi10.1115/1.4043090
    journal fristpage61006
    journal lastpage061006-7
    treeJournal of Thermal Science and Engineering Applications:;2019:;volume( 011 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian