YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Investigation of Fuel Anti-Knock-Index Requirements in Three Small Two-Stroke Engines for Remotely Piloted Aircraft

    Source: Journal of Engineering for Gas Turbines and Power:;2019:;volume( 141 ):;issue: 005::page 51502
    Author:
    Ausserer, Joseph K.
    ,
    Polanka, Marc D.
    ,
    Litke, Paul J.
    ,
    Baranski, Jacob A.
    DOI: 10.1115/1.4040520
    Publisher: American Society of Mechanical Engineers (ASME)
    Abstract: Small remotely piloted aircraft (10–25 kg) that are powered by internal combustion engines typically operate on gasoline with an anti-knock index (AKI) > 80. To comply with the single-battlefield-fuel initiative [Department of Defense (DoD) Directive 4140.25], interest has increased in converting power plants for these platforms to run on low-AKI fuels such as diesel and Jet-A with AKIs of ∼20. It has been speculated that the higher losses (short circuiting, incomplete combustion, heat transfer) that cause these engines to have lower efficiencies than their conventional-scale counterparts may also relax their required fuel AKI. The fuel-AKI requirements of three two-stroke spark ignition (SI) engines with 28, 55, and 85 cm3 displacements were mapped, and the performance was compared to that on 98 ON (octane number) fuel. Switching from 98 ON fuel to 20 ON (Jet-A and diesel equivalent AKI) fuel while maintaining optimum combustion phasing led to a 3–5 crank-angle degree (CAD) reduction in burn angle, a 2–3% increase in power, and a 0.5–1% (absolute) increase in fuel-conversion efficiency at non-knock-limited conditions through shortening of the CA0–CA10 burn angle. The efficiency improvement translates to a 6% increase in range or endurance. The results indicate that abnormal combustion is not a significant obstacle to operating small commercial-off-the-shelf (COTS) engines on low-AKI fuels and that most of the power and efficiency improvements demonstrated in previous heavy-fuel conversion efforts were the result of modifications made to accommodate low-volatility fuels, not the faster burn rate of the low-AKI fuels themselves.
    • Download: (2.704Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Investigation of Fuel Anti-Knock-Index Requirements in Three Small Two-Stroke Engines for Remotely Piloted Aircraft

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4258748
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorAusserer, Joseph K.
    contributor authorPolanka, Marc D.
    contributor authorLitke, Paul J.
    contributor authorBaranski, Jacob A.
    date accessioned2019-09-18T09:05:29Z
    date available2019-09-18T09:05:29Z
    date copyright4/19/2019 12:00:00 AM
    date issued2019
    identifier issn0742-4795
    identifier othergtp_141_05_051502
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4258748
    description abstractSmall remotely piloted aircraft (10–25 kg) that are powered by internal combustion engines typically operate on gasoline with an anti-knock index (AKI) > 80. To comply with the single-battlefield-fuel initiative [Department of Defense (DoD) Directive 4140.25], interest has increased in converting power plants for these platforms to run on low-AKI fuels such as diesel and Jet-A with AKIs of ∼20. It has been speculated that the higher losses (short circuiting, incomplete combustion, heat transfer) that cause these engines to have lower efficiencies than their conventional-scale counterparts may also relax their required fuel AKI. The fuel-AKI requirements of three two-stroke spark ignition (SI) engines with 28, 55, and 85 cm3 displacements were mapped, and the performance was compared to that on 98 ON (octane number) fuel. Switching from 98 ON fuel to 20 ON (Jet-A and diesel equivalent AKI) fuel while maintaining optimum combustion phasing led to a 3–5 crank-angle degree (CAD) reduction in burn angle, a 2–3% increase in power, and a 0.5–1% (absolute) increase in fuel-conversion efficiency at non-knock-limited conditions through shortening of the CA0–CA10 burn angle. The efficiency improvement translates to a 6% increase in range or endurance. The results indicate that abnormal combustion is not a significant obstacle to operating small commercial-off-the-shelf (COTS) engines on low-AKI fuels and that most of the power and efficiency improvements demonstrated in previous heavy-fuel conversion efforts were the result of modifications made to accommodate low-volatility fuels, not the faster burn rate of the low-AKI fuels themselves.
    publisherAmerican Society of Mechanical Engineers (ASME)
    titleExperimental Investigation of Fuel Anti-Knock-Index Requirements in Three Small Two-Stroke Engines for Remotely Piloted Aircraft
    typeJournal Paper
    journal volume141
    journal issue5
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4040520
    journal fristpage51502
    journal lastpage051502-8
    treeJournal of Engineering for Gas Turbines and Power:;2019:;volume( 141 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian