YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On Incompressibility Constraint and Crack Direction in Soft Solids

    Source: Journal of Applied Mechanics:;2019:;volume( 086 ):;issue: 010::page 101004
    Author:
    Mythravaruni, P.
    ,
    Volokh, K. Y.
    DOI: 10.1115/1.4044089
    Publisher: American Society of Mechanical Engineers (ASME)
    Abstract: Most soft materials resist volumetric changes much more than shape distortions. This experimental observation led to the introduction of the incompressibility constraint in the constitutive description of soft materials. The incompressibility constraint provides analytical solutions for problems which, otherwise, could be solved numerically only. However, in the present work, we show that the enforcement of the incompressibility constraint in the analysis of the failure of soft materials can lead to somewhat nonphysical results. We use hyperelasticity with energy limiters to describe the material failure, which starts via the violation of the condition of strong ellipticity. This mathematical condition physically means inability of the material to propagate superimposed waves because cracks nucleate perpendicular to the direction of a possible wave propagation. By enforcing the incompressibility constraint, we sort out longitudinal waves, and consequently, we can miss cracks perpendicular to longitudinal waves. In the present work, we show that such scenario, indeed, occurs in the problems of uniaxial tension and pure shear of natural rubber. We also find that the suppression of longitudinal waves via the incompressibility constraint does not affect the consideration of the material failure in equibiaxial tension and the practically relevant problem of the failure of rubber bearings under combined shear and compression.
    • Download: (271.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On Incompressibility Constraint and Crack Direction in Soft Solids

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4258315
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorMythravaruni, P.
    contributor authorVolokh, K. Y.
    date accessioned2019-09-18T09:03:17Z
    date available2019-09-18T09:03:17Z
    date copyright7/17/2019 12:00:00 AM
    date issued2019
    identifier issn0021-8936
    identifier otherjam_86_10_101004
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4258315
    description abstractMost soft materials resist volumetric changes much more than shape distortions. This experimental observation led to the introduction of the incompressibility constraint in the constitutive description of soft materials. The incompressibility constraint provides analytical solutions for problems which, otherwise, could be solved numerically only. However, in the present work, we show that the enforcement of the incompressibility constraint in the analysis of the failure of soft materials can lead to somewhat nonphysical results. We use hyperelasticity with energy limiters to describe the material failure, which starts via the violation of the condition of strong ellipticity. This mathematical condition physically means inability of the material to propagate superimposed waves because cracks nucleate perpendicular to the direction of a possible wave propagation. By enforcing the incompressibility constraint, we sort out longitudinal waves, and consequently, we can miss cracks perpendicular to longitudinal waves. In the present work, we show that such scenario, indeed, occurs in the problems of uniaxial tension and pure shear of natural rubber. We also find that the suppression of longitudinal waves via the incompressibility constraint does not affect the consideration of the material failure in equibiaxial tension and the practically relevant problem of the failure of rubber bearings under combined shear and compression.
    publisherAmerican Society of Mechanical Engineers (ASME)
    titleOn Incompressibility Constraint and Crack Direction in Soft Solids
    typeJournal Paper
    journal volume86
    journal issue10
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.4044089
    journal fristpage101004
    journal lastpage101004-5
    treeJournal of Applied Mechanics:;2019:;volume( 086 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian