YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Solar Thermal Panels for Small-Medium Scale Air Cleaners in Major Cities

    Source: Journal of Solar Energy Engineering:;2019:;volume( 141 ):;issue: 006::page 61006
    Author:
    Arias, Francisco J.
    ,
    Heras, Salvador De Las
    DOI: 10.1115/1.4043752
    Publisher: American Society of Mechanical Engineers (ASME)
    Abstract: Air quality in major cities is reaching worrisome levels across the planet owing to large-scale industrialization. As a result, air purification systems are becoming a fertile and emerging field for research. Here, consideration is given to the use of a small-medium scale air purification system for cities using a kind of solar thermal panels by inducing local convective currents intended to be used in parks, housing estates, or similar urban places providing a local improvement of the quality of the air. The main difficulty which arose when attempting to use these convective currents is that the upward flow of hot air, which has been cleaned from contaminant particles during its upward travel, must be returned back to the ground. To accomplish this, air must be cooled during the travel in order to obtain an effective buoyancy. Several possible solutions have been proposed in the past, for example, the use of a dedicated cooling system as is the use of water spraying systems which could be an attractive option for large towers. However, for small-medium scale air cleaners, dedicated spraying cooling systems are out of question either because of the requirement of water flow or because of the high local humidity generated which can be uncomfortable for humans. One possible solution could be taking advantage of vertical panels in which a side of the panel is permanently irradiated and the other is permanently in the shadow; in this way, heating and cooling could be performed eliminating the need for specialized cooling systems, and although the effective buoyancy—and then the purified air mass flow—of such a system is considerably reduced, nevertheless, it could still be acceptable for local small-scale applications. Utilizing a simplified physical model, the effective buoyancy and attainable air mass flow were calculated. It is shown that for a small panel of 5 m-height or thereabouts, an air flow per unit of width ∼0.4 kg/s is attainable, and for a 10 m-height panel, an air flow per unit of width 0.6 kg/s is attainable. Computational fluid dynamics simulations were performed which agree with the analytical results within ±30 %.
    • Download: (518.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Solar Thermal Panels for Small-Medium Scale Air Cleaners in Major Cities

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4258078
    Collections
    • Journal of Solar Energy Engineering

    Show full item record

    contributor authorArias, Francisco J.
    contributor authorHeras, Salvador De Las
    date accessioned2019-09-18T09:02:02Z
    date available2019-09-18T09:02:02Z
    date copyright5/28/2019 12:00:00 AM
    date issued2019
    identifier issn0199-6231
    identifier othersol_141_6_061006
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4258078
    description abstractAir quality in major cities is reaching worrisome levels across the planet owing to large-scale industrialization. As a result, air purification systems are becoming a fertile and emerging field for research. Here, consideration is given to the use of a small-medium scale air purification system for cities using a kind of solar thermal panels by inducing local convective currents intended to be used in parks, housing estates, or similar urban places providing a local improvement of the quality of the air. The main difficulty which arose when attempting to use these convective currents is that the upward flow of hot air, which has been cleaned from contaminant particles during its upward travel, must be returned back to the ground. To accomplish this, air must be cooled during the travel in order to obtain an effective buoyancy. Several possible solutions have been proposed in the past, for example, the use of a dedicated cooling system as is the use of water spraying systems which could be an attractive option for large towers. However, for small-medium scale air cleaners, dedicated spraying cooling systems are out of question either because of the requirement of water flow or because of the high local humidity generated which can be uncomfortable for humans. One possible solution could be taking advantage of vertical panels in which a side of the panel is permanently irradiated and the other is permanently in the shadow; in this way, heating and cooling could be performed eliminating the need for specialized cooling systems, and although the effective buoyancy—and then the purified air mass flow—of such a system is considerably reduced, nevertheless, it could still be acceptable for local small-scale applications. Utilizing a simplified physical model, the effective buoyancy and attainable air mass flow were calculated. It is shown that for a small panel of 5 m-height or thereabouts, an air flow per unit of width ∼0.4 kg/s is attainable, and for a 10 m-height panel, an air flow per unit of width 0.6 kg/s is attainable. Computational fluid dynamics simulations were performed which agree with the analytical results within ±30 %.
    publisherAmerican Society of Mechanical Engineers (ASME)
    titleSolar Thermal Panels for Small-Medium Scale Air Cleaners in Major Cities
    typeJournal Paper
    journal volume141
    journal issue6
    journal titleJournal of Solar Energy Engineering
    identifier doi10.1115/1.4043752
    journal fristpage61006
    journal lastpage061006-6
    treeJournal of Solar Energy Engineering:;2019:;volume( 141 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian