YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimentally and Numerically Validated Analytical Solutions to Nonbuckling Piezoelectric Serpentine Ribbons

    Source: Journal of Applied Mechanics:;2019:;volume( 086 ):;issue: 005::page 51010
    Author:
    Liu, Siyi
    ,
    Ha, Taewoo
    ,
    Lu, Nanshu
    DOI: 10.1115/1.4042570
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Emerging stretchable piezoelectric devices have added exciting sensing and energy harvesting capabilities to wearable and implantable soft electronics. As conventional piezoelectric materials are intrinsically stiff and some are even brittle, out-of-plane wrinkled or buckled structures and in-plane serpentine ribbons have been introduced to enhance their compliance and stretchability. Among those stretchable structures, in-plane piezoelectric serpentine ribbons (PSRs) are preferred on account of their manufacturability and low profiles. To elucidate the trade-off between compliance and sensitivity of PSRs of various shapes, we herein report a theoretical framework by combining the piezoelectric plate theory with our previously developed elasticity solutions for passive serpentine ribbons without piezoelectric property. The electric displacement field and the output voltage of a freestanding but nonbuckling PSR under uniaxial stretch can be analytically solved under linear assumptions. Our analytical solutions were validated by finite element modeling (FEM) and experiments using polyvinylidene fluoride (PVDF)-based PSR. In addition to freestanding PSRs, PSRs sandwiched by polymer layers were also investigated by FEM and experiments. We found that thicker and stiffer polymers reduce the stretchability but enhance the voltage output of PSRs. When the matrix is much softer than the piezoelectric material, our analytical solutions to a freestanding PSR are also applicable to the sandwiched ones.
    • Download: (610.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimentally and Numerically Validated Analytical Solutions to Nonbuckling Piezoelectric Serpentine Ribbons

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4257460
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorLiu, Siyi
    contributor authorHa, Taewoo
    contributor authorLu, Nanshu
    date accessioned2019-06-08T09:27:59Z
    date available2019-06-08T09:27:59Z
    date copyright3/16/2019 12:00:00 AM
    date issued2019
    identifier issn0021-8936
    identifier otherjam_86_5_051010.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4257460
    description abstractEmerging stretchable piezoelectric devices have added exciting sensing and energy harvesting capabilities to wearable and implantable soft electronics. As conventional piezoelectric materials are intrinsically stiff and some are even brittle, out-of-plane wrinkled or buckled structures and in-plane serpentine ribbons have been introduced to enhance their compliance and stretchability. Among those stretchable structures, in-plane piezoelectric serpentine ribbons (PSRs) are preferred on account of their manufacturability and low profiles. To elucidate the trade-off between compliance and sensitivity of PSRs of various shapes, we herein report a theoretical framework by combining the piezoelectric plate theory with our previously developed elasticity solutions for passive serpentine ribbons without piezoelectric property. The electric displacement field and the output voltage of a freestanding but nonbuckling PSR under uniaxial stretch can be analytically solved under linear assumptions. Our analytical solutions were validated by finite element modeling (FEM) and experiments using polyvinylidene fluoride (PVDF)-based PSR. In addition to freestanding PSRs, PSRs sandwiched by polymer layers were also investigated by FEM and experiments. We found that thicker and stiffer polymers reduce the stretchability but enhance the voltage output of PSRs. When the matrix is much softer than the piezoelectric material, our analytical solutions to a freestanding PSR are also applicable to the sandwiched ones.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExperimentally and Numerically Validated Analytical Solutions to Nonbuckling Piezoelectric Serpentine Ribbons
    typeJournal Paper
    journal volume86
    journal issue5
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.4042570
    journal fristpage51010
    journal lastpage051010-10
    treeJournal of Applied Mechanics:;2019:;volume( 086 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian