Characterization of a New 10 kWe High Flux Solar Simulator Via Indirect Radiation Mapping TechniqueSource: Journal of Solar Energy Engineering:;2019:;volume( 141 ):;issue: 002::page 21005DOI: 10.1115/1.4042246Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: This paper presents characterization of a new high flux solar simulator consisting of a 10 kW Xenon arc via indirect heat flux mapping technique for solar thermochemical applications. The method incorporates the use of a heat flux gauge (HFG), single Lambertian target, complementary metal oxide semiconductor (CMOS) camera, and three-axis optical alignment assembly. The grayscale values are correlated to heat flux values for faster optimization and characterization of the radiation source. Unlike previous work in heat flux characterization that rely on two Lambertian targets, this study implements the use of a single target to eliminate possible errors due to interchanging the targets. The current supplied to the simulator was varied within the range of 120–200 A to change the total power and to mimic the fluctuation in sun's irradiance. Several characteristic parameters of the simulator were studied, including the temporal instability and radial nonuniformity (RNU). In addition, a sensitivity analysis was performed on the number of images captured, which showed a threshold value of at least 30 images for essentially accurate results. The results showed that the flux distribution obtained on a 10 × 10 cm2 target had a peak flux of 6990 kWm−2, total power of 3.49 kW, and half width of 6.25 mm. The study concludes with the illustration and use of a new technique, the merging method, that allows characterization of heat flux distributions on larger areas, which is a promising addition to the present heat flux characterization techniques.
|
Collections
Show full item record
contributor author | Abuseada, Mostafa | |
contributor author | Ophoff, Cédric | |
contributor author | Ozalp, Nesrin | |
date accessioned | 2019-03-17T11:10:44Z | |
date available | 2019-03-17T11:10:44Z | |
date copyright | 1/8/2019 12:00:00 AM | |
date issued | 2019 | |
identifier issn | 0199-6231 | |
identifier other | sol_141_02_021005.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4256786 | |
description abstract | This paper presents characterization of a new high flux solar simulator consisting of a 10 kW Xenon arc via indirect heat flux mapping technique for solar thermochemical applications. The method incorporates the use of a heat flux gauge (HFG), single Lambertian target, complementary metal oxide semiconductor (CMOS) camera, and three-axis optical alignment assembly. The grayscale values are correlated to heat flux values for faster optimization and characterization of the radiation source. Unlike previous work in heat flux characterization that rely on two Lambertian targets, this study implements the use of a single target to eliminate possible errors due to interchanging the targets. The current supplied to the simulator was varied within the range of 120–200 A to change the total power and to mimic the fluctuation in sun's irradiance. Several characteristic parameters of the simulator were studied, including the temporal instability and radial nonuniformity (RNU). In addition, a sensitivity analysis was performed on the number of images captured, which showed a threshold value of at least 30 images for essentially accurate results. The results showed that the flux distribution obtained on a 10 × 10 cm2 target had a peak flux of 6990 kWm−2, total power of 3.49 kW, and half width of 6.25 mm. The study concludes with the illustration and use of a new technique, the merging method, that allows characterization of heat flux distributions on larger areas, which is a promising addition to the present heat flux characterization techniques. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Characterization of a New 10 kWe High Flux Solar Simulator Via Indirect Radiation Mapping Technique | |
type | Journal Paper | |
journal volume | 141 | |
journal issue | 2 | |
journal title | Journal of Solar Energy Engineering | |
identifier doi | 10.1115/1.4042246 | |
journal fristpage | 21005 | |
journal lastpage | 021005-14 | |
tree | Journal of Solar Energy Engineering:;2019:;volume( 141 ):;issue: 002 | |
contenttype | Fulltext |