YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Analysis of Solar Receiver Performance for Chemical-Looping Integration With a Concentrating Solar Thermal System

    Source: Journal of Solar Energy Engineering:;2019:;volume( 141 ):;issue: 002::page 21003
    Author:
    Ma, Zhiwen
    ,
    Martinek, Janna
    DOI: 10.1115/1.4042058
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper introduces a chemical-looping configuration integrated with a concentrating solar thermal (CST) system. The CST system uses an array of mirrors to focus sunlight, and the concentrated solar flux is applied to a solar receiver to collect and convert solar energy into thermal energy. The thermal energy then drives a thermal power cycle for electricity generation or provides an energy source to chemical processes for material or fuel production. Considerable interest in CST energy systems has been driven by power generation, with its capability to store thermal energy for continuous electricity supply or peak shaving. However, CST systems have other potential to convert solar energy into fuel or to support thermochemical processes. Thus, we introduce the concept of a chemical-looping configuration integrated with the CST system that has potential applications for thermochemical energy storage or solar thermochemical hydrogen production. The chemical-looping configuration integrated with a CST system consists of the following: a solar-receiver reactor for solar-energy collection and conversion, thermochemical energy storage, a reverse reactor for energy release, and system circulation. We describe a high-temperature reactor receiver that is a key component in the chemical-looping system. We also show the solar-receiver design and its performance analyzed by solar-tracing and thermal-modeling methods for integration within a CST system.
    • Download: (3.063Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Analysis of Solar Receiver Performance for Chemical-Looping Integration With a Concentrating Solar Thermal System

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4256784
    Collections
    • Journal of Solar Energy Engineering

    Show full item record

    contributor authorMa, Zhiwen
    contributor authorMartinek, Janna
    date accessioned2019-03-17T11:10:41Z
    date available2019-03-17T11:10:41Z
    date copyright1/8/2019 12:00:00 AM
    date issued2019
    identifier issn0199-6231
    identifier othersol_141_02_021003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4256784
    description abstractThis paper introduces a chemical-looping configuration integrated with a concentrating solar thermal (CST) system. The CST system uses an array of mirrors to focus sunlight, and the concentrated solar flux is applied to a solar receiver to collect and convert solar energy into thermal energy. The thermal energy then drives a thermal power cycle for electricity generation or provides an energy source to chemical processes for material or fuel production. Considerable interest in CST energy systems has been driven by power generation, with its capability to store thermal energy for continuous electricity supply or peak shaving. However, CST systems have other potential to convert solar energy into fuel or to support thermochemical processes. Thus, we introduce the concept of a chemical-looping configuration integrated with the CST system that has potential applications for thermochemical energy storage or solar thermochemical hydrogen production. The chemical-looping configuration integrated with a CST system consists of the following: a solar-receiver reactor for solar-energy collection and conversion, thermochemical energy storage, a reverse reactor for energy release, and system circulation. We describe a high-temperature reactor receiver that is a key component in the chemical-looping system. We also show the solar-receiver design and its performance analyzed by solar-tracing and thermal-modeling methods for integration within a CST system.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAnalysis of Solar Receiver Performance for Chemical-Looping Integration With a Concentrating Solar Thermal System
    typeJournal Paper
    journal volume141
    journal issue2
    journal titleJournal of Solar Energy Engineering
    identifier doi10.1115/1.4042058
    journal fristpage21003
    journal lastpage021003-9
    treeJournal of Solar Energy Engineering:;2019:;volume( 141 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian