YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Source Term Based Modeling of Rotating Cavitation in Turbopumps

    Source: Journal of Engineering for Gas Turbines and Power:;2019:;volume( 141 ):;issue: 006::page 61002
    Author:
    Vermes, A. G.
    ,
    Lettieri, C.
    DOI: 10.1115/1.4042302
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The recent growth of private options in launch vehicles has substantially raised price competition in the space launch market. This has increased the need to deliver reliable launch vehicles at reduced engine development cost and has led to increased industrial interest in reduced order models. Large-scale liquid rocket engines require high-speed turbopumps to inject cryogenic propellants into the combustion chamber. These pumps can experience cavitation instabilities even when operating near design conditions. Of particular concern is rotating cavitation (RC), which is characterized by an asymmetric cavity rotating at the pump inlet, which can cause severe vibration, breaking of the pump, and loss of the mission. Despite much work in the field, there are limited guidelines to avoid RC during design and its occurrence is often assessed through costly experimental testing. This paper presents a source term based model for stability assessment of rocket engine turbopumps. The approach utilizes mass and momentum source terms to model cavities and hydrodynamic blockage in inviscid, single-phase numerical calculations, reducing the computational cost of the calculations by an order of magnitude compared to traditional numerical methods. Comparison of the results from the model with experiments and high-fidelity calculations indicates agreement of the head coefficient and cavity blockage within 0.26% and 5%, respectively. The computations capture RC in a two-dimensional (2D) inducer at the expected flow coefficient and cavitation number. The mechanism of formation and propagation of the instability is correctly reproduced.
    • Download: (3.146Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Source Term Based Modeling of Rotating Cavitation in Turbopumps

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4256772
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorVermes, A. G.
    contributor authorLettieri, C.
    date accessioned2019-03-17T11:10:27Z
    date available2019-03-17T11:10:27Z
    date copyright1/8/2019 12:00:00 AM
    date issued2019
    identifier issn0742-4795
    identifier othergtp_141_06_061002.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4256772
    description abstractThe recent growth of private options in launch vehicles has substantially raised price competition in the space launch market. This has increased the need to deliver reliable launch vehicles at reduced engine development cost and has led to increased industrial interest in reduced order models. Large-scale liquid rocket engines require high-speed turbopumps to inject cryogenic propellants into the combustion chamber. These pumps can experience cavitation instabilities even when operating near design conditions. Of particular concern is rotating cavitation (RC), which is characterized by an asymmetric cavity rotating at the pump inlet, which can cause severe vibration, breaking of the pump, and loss of the mission. Despite much work in the field, there are limited guidelines to avoid RC during design and its occurrence is often assessed through costly experimental testing. This paper presents a source term based model for stability assessment of rocket engine turbopumps. The approach utilizes mass and momentum source terms to model cavities and hydrodynamic blockage in inviscid, single-phase numerical calculations, reducing the computational cost of the calculations by an order of magnitude compared to traditional numerical methods. Comparison of the results from the model with experiments and high-fidelity calculations indicates agreement of the head coefficient and cavity blockage within 0.26% and 5%, respectively. The computations capture RC in a two-dimensional (2D) inducer at the expected flow coefficient and cavitation number. The mechanism of formation and propagation of the instability is correctly reproduced.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSource Term Based Modeling of Rotating Cavitation in Turbopumps
    typeJournal Paper
    journal volume141
    journal issue6
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4042302
    journal fristpage61002
    journal lastpage061002-8
    treeJournal of Engineering for Gas Turbines and Power:;2019:;volume( 141 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian