Engine-Scalable Rotor Casing Convective Heat Flux Evaluation Using Inverse Heat Transfer MethodsSource: Journal of Engineering for Gas Turbines and Power:;2019:;volume( 141 ):;issue: 001::page 11012DOI: 10.1115/1.4040713Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: In this paper, we propose a two-step methodology to evaluate the convective heat flux along the rotor casing using an engine-scalable approach based on discrete Green's functions . The first step consists in the use of an inverse heat transfer technique to retrieve the heat flux distribution on the shroud inner wall by measuring the temperature of the outside wall; the second step is the calculation of the convective heat flux at engine conditions, using the experimental heat flux and the Green functions engine-scalable technique. Inverse methodologies allow the determination of boundary conditions; in this case, the inner casing surface heat flux, based on measurements from outside of the system, which prevents aerothermal distortion caused by routing the instrumentation into the test article. The heat flux, retrieved from the inverse heat transfer methodology, is related to the rotor tip gap. Therefore, for a given geometry and tip gap, the pressure and temperature can also be retrieved. In this work, the digital filter method is applied in order to take advantage of the response of the temperature to heat flux pulses. The discrete Green's function approach employs a matrix to relate an arbitrary temperature distribution to a series of pulses of heat flux. In this procedure, the terms of the Green's function matrix are evaluated with the output of the inverse heat transfer method. Given that key dimensionless numbers are conserved, the Green's functions matrix can be extrapolated to engine-like conditions. A validation of the methodology is performed by imposing different arbitrary heat flux distributions, to finally demonstrate the scalability of the Green's function method to engine conditions. A detailed uncertainty analysis of the two-step routine is included based on the value of the pulse of heat flux, the temperature measurement uncertainty, the thermal properties of the material, and the physical properties of the rotor casing.
|
Show full item record
contributor author | Gonzalez Cuadrado, David | |
contributor author | Lozano, Francisco | |
contributor author | Andreoli, Valeria | |
contributor author | Paniagua, Guillermo | |
date accessioned | 2019-03-17T10:58:47Z | |
date available | 2019-03-17T10:58:47Z | |
date copyright | 9/14/2018 12:00:00 AM | |
date issued | 2019 | |
identifier issn | 0742-4795 | |
identifier other | gtp_141_01_011012.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4256478 | |
description abstract | In this paper, we propose a two-step methodology to evaluate the convective heat flux along the rotor casing using an engine-scalable approach based on discrete Green's functions . The first step consists in the use of an inverse heat transfer technique to retrieve the heat flux distribution on the shroud inner wall by measuring the temperature of the outside wall; the second step is the calculation of the convective heat flux at engine conditions, using the experimental heat flux and the Green functions engine-scalable technique. Inverse methodologies allow the determination of boundary conditions; in this case, the inner casing surface heat flux, based on measurements from outside of the system, which prevents aerothermal distortion caused by routing the instrumentation into the test article. The heat flux, retrieved from the inverse heat transfer methodology, is related to the rotor tip gap. Therefore, for a given geometry and tip gap, the pressure and temperature can also be retrieved. In this work, the digital filter method is applied in order to take advantage of the response of the temperature to heat flux pulses. The discrete Green's function approach employs a matrix to relate an arbitrary temperature distribution to a series of pulses of heat flux. In this procedure, the terms of the Green's function matrix are evaluated with the output of the inverse heat transfer method. Given that key dimensionless numbers are conserved, the Green's functions matrix can be extrapolated to engine-like conditions. A validation of the methodology is performed by imposing different arbitrary heat flux distributions, to finally demonstrate the scalability of the Green's function method to engine conditions. A detailed uncertainty analysis of the two-step routine is included based on the value of the pulse of heat flux, the temperature measurement uncertainty, the thermal properties of the material, and the physical properties of the rotor casing. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Engine-Scalable Rotor Casing Convective Heat Flux Evaluation Using Inverse Heat Transfer Methods | |
type | Journal Paper | |
journal volume | 141 | |
journal issue | 1 | |
journal title | Journal of Engineering for Gas Turbines and Power | |
identifier doi | 10.1115/1.4040713 | |
journal fristpage | 11012 | |
journal lastpage | 011012-10 | |
tree | Journal of Engineering for Gas Turbines and Power:;2019:;volume( 141 ):;issue: 001 | |
contenttype | Fulltext |