YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Engine-Scalable Rotor Casing Convective Heat Flux Evaluation Using Inverse Heat Transfer Methods

    Source: Journal of Engineering for Gas Turbines and Power:;2019:;volume( 141 ):;issue: 001::page 11012
    Author:
    Gonzalez Cuadrado, David
    ,
    Lozano, Francisco
    ,
    Andreoli, Valeria
    ,
    Paniagua, Guillermo
    DOI: 10.1115/1.4040713
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this paper, we propose a two-step methodology to evaluate the convective heat flux along the rotor casing using an engine-scalable approach based on discrete Green's functions . The first step consists in the use of an inverse heat transfer technique to retrieve the heat flux distribution on the shroud inner wall by measuring the temperature of the outside wall; the second step is the calculation of the convective heat flux at engine conditions, using the experimental heat flux and the Green functions engine-scalable technique. Inverse methodologies allow the determination of boundary conditions; in this case, the inner casing surface heat flux, based on measurements from outside of the system, which prevents aerothermal distortion caused by routing the instrumentation into the test article. The heat flux, retrieved from the inverse heat transfer methodology, is related to the rotor tip gap. Therefore, for a given geometry and tip gap, the pressure and temperature can also be retrieved. In this work, the digital filter method is applied in order to take advantage of the response of the temperature to heat flux pulses. The discrete Green's function approach employs a matrix to relate an arbitrary temperature distribution to a series of pulses of heat flux. In this procedure, the terms of the Green's function matrix are evaluated with the output of the inverse heat transfer method. Given that key dimensionless numbers are conserved, the Green's functions matrix can be extrapolated to engine-like conditions. A validation of the methodology is performed by imposing different arbitrary heat flux distributions, to finally demonstrate the scalability of the Green's function method to engine conditions. A detailed uncertainty analysis of the two-step routine is included based on the value of the pulse of heat flux, the temperature measurement uncertainty, the thermal properties of the material, and the physical properties of the rotor casing.
    • Download: (2.443Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Engine-Scalable Rotor Casing Convective Heat Flux Evaluation Using Inverse Heat Transfer Methods

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4256478
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorGonzalez Cuadrado, David
    contributor authorLozano, Francisco
    contributor authorAndreoli, Valeria
    contributor authorPaniagua, Guillermo
    date accessioned2019-03-17T10:58:47Z
    date available2019-03-17T10:58:47Z
    date copyright9/14/2018 12:00:00 AM
    date issued2019
    identifier issn0742-4795
    identifier othergtp_141_01_011012.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4256478
    description abstractIn this paper, we propose a two-step methodology to evaluate the convective heat flux along the rotor casing using an engine-scalable approach based on discrete Green's functions . The first step consists in the use of an inverse heat transfer technique to retrieve the heat flux distribution on the shroud inner wall by measuring the temperature of the outside wall; the second step is the calculation of the convective heat flux at engine conditions, using the experimental heat flux and the Green functions engine-scalable technique. Inverse methodologies allow the determination of boundary conditions; in this case, the inner casing surface heat flux, based on measurements from outside of the system, which prevents aerothermal distortion caused by routing the instrumentation into the test article. The heat flux, retrieved from the inverse heat transfer methodology, is related to the rotor tip gap. Therefore, for a given geometry and tip gap, the pressure and temperature can also be retrieved. In this work, the digital filter method is applied in order to take advantage of the response of the temperature to heat flux pulses. The discrete Green's function approach employs a matrix to relate an arbitrary temperature distribution to a series of pulses of heat flux. In this procedure, the terms of the Green's function matrix are evaluated with the output of the inverse heat transfer method. Given that key dimensionless numbers are conserved, the Green's functions matrix can be extrapolated to engine-like conditions. A validation of the methodology is performed by imposing different arbitrary heat flux distributions, to finally demonstrate the scalability of the Green's function method to engine conditions. A detailed uncertainty analysis of the two-step routine is included based on the value of the pulse of heat flux, the temperature measurement uncertainty, the thermal properties of the material, and the physical properties of the rotor casing.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEngine-Scalable Rotor Casing Convective Heat Flux Evaluation Using Inverse Heat Transfer Methods
    typeJournal Paper
    journal volume141
    journal issue1
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4040713
    journal fristpage11012
    journal lastpage011012-10
    treeJournal of Engineering for Gas Turbines and Power:;2019:;volume( 141 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian