YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Response of Pounding Dynamic Vibration Neutralizer Under Harmonic and Random Excitation

    Source: Journal of Applied Mechanics:;2019:;volume( 086 ):;issue: 002::page 21003
    Author:
    Masri, Sami F.
    ,
    Caffrey, John P.
    DOI: 10.1115/1.4041910
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Exact steady-state solutions are obtained for the motion of an single-degree-of-freedom (SDOF) system that is provided with a highly nonlinear auxiliary mass damper (AMD), which resembles a conventional dynamic vibration neutralizer (DVN), whose relative motion with respect to the primary system is constrained to remain within a specified gap, thus operating as a “pounding DVN.” This configuration of a conventional DVN with motion-limiting stops could be quite useful when a primary structure with a linear DVN is subjected to transient loads (e.g., earthquakes) that may cause excessive relative motion between the auxiliary and primary systems. Under the assumption that the motion of the nonlinear system under harmonic excitation is undergoing steady-state motion with two impacts per period of the excitation, an exact, closed-form solution is obtained for the system motion. This solution is subsequently used to develop an approximate analytical solution for the stationary response of the pounding DVN when subjected to random excitation with white spectral density and Gaussian probability distribution. Comparison between the analytically estimated rms response of the primary system and its corresponding response obtained via numerical simulation shows that the analytical estimates are quite accurate when the coupling (tuning parameters) between the primary system and the damper are weak, but only moderately accurate when the linear components of the tuning parameters are optimized. It is also shown that under nonstationary, the pounding DVN provides slightly degraded performance compared to the linear one but simultaneously limits the damper-free motion to specified design constraints.
    • Download: (3.316Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Response of Pounding Dynamic Vibration Neutralizer Under Harmonic and Random Excitation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4256459
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorMasri, Sami F.
    contributor authorCaffrey, John P.
    date accessioned2019-03-17T10:57:16Z
    date available2019-03-17T10:57:16Z
    date copyright11/22/2018 12:00:00 AM
    date issued2019
    identifier issn0021-8936
    identifier otherjam_086_02_021003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4256459
    description abstractExact steady-state solutions are obtained for the motion of an single-degree-of-freedom (SDOF) system that is provided with a highly nonlinear auxiliary mass damper (AMD), which resembles a conventional dynamic vibration neutralizer (DVN), whose relative motion with respect to the primary system is constrained to remain within a specified gap, thus operating as a “pounding DVN.” This configuration of a conventional DVN with motion-limiting stops could be quite useful when a primary structure with a linear DVN is subjected to transient loads (e.g., earthquakes) that may cause excessive relative motion between the auxiliary and primary systems. Under the assumption that the motion of the nonlinear system under harmonic excitation is undergoing steady-state motion with two impacts per period of the excitation, an exact, closed-form solution is obtained for the system motion. This solution is subsequently used to develop an approximate analytical solution for the stationary response of the pounding DVN when subjected to random excitation with white spectral density and Gaussian probability distribution. Comparison between the analytically estimated rms response of the primary system and its corresponding response obtained via numerical simulation shows that the analytical estimates are quite accurate when the coupling (tuning parameters) between the primary system and the damper are weak, but only moderately accurate when the linear components of the tuning parameters are optimized. It is also shown that under nonstationary, the pounding DVN provides slightly degraded performance compared to the linear one but simultaneously limits the damper-free motion to specified design constraints.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleResponse of Pounding Dynamic Vibration Neutralizer Under Harmonic and Random Excitation
    typeJournal Paper
    journal volume86
    journal issue2
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.4041910
    journal fristpage21003
    journal lastpage021003-15
    treeJournal of Applied Mechanics:;2019:;volume( 086 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian