YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Extension of Fuel Flexibility by Combining Intelligent Control Methods for Siemens SGT-400 Dry Low Emission Combustion System

    Source: Journal of Engineering for Gas Turbines and Power:;2019:;volume( 141 ):;issue: 001::page 11003
    Author:
    Liu, Kexin
    ,
    Hubbard, Phill
    ,
    Sadasivuni, Suresh
    ,
    Bulat, Ghenadie
    DOI: 10.1115/1.4040689
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Extension of gas fuel flexibility of a current production SGT-400 industrial gas turbine combustor system is reported in this paper. A SGT-400 engine with hybrid combustion system configuration to meet a customer's specific requirements was string tested. This engine was tested with the gas turbine package driver unit and the gas compressor-driven unit to operate on and switch between three different fuels with temperature-corrected Wobbe index (TCWI) varying between 45 MJ/m3, 38 MJ/m3, and 30 MJ/m3. The alteration of fuel heating value was achieved by injection or withdrawal of N2 into or from the fuel system. The results show that the engine can maintain stable operation on and switching between these three different fuels with fast changeover rate of the heating value greater than 10% per minute without shutdown or change in load condition. High-pressure rig tests were carried out to demonstrate the capabilities of the combustion system at engine operating conditions across a wide range of ambient conditions. Variations of the fuel heating value, with Wobbe index (WI) of 30 MJ/Sm3, 33 MJ/Sm3, 35 MJ/Sm3, and 45 MJ/Sm3 (natural gas, NG) at standard conditions, were achieved by blending NG with CO2 as diluent. Emissions, combustion dynamics, fuel pressure, and flashback monitoring via measurement of burner metal temperatures, were the main parameters used to evaluate the impact of fuel flexibility on combustor performance. Test results show that NOx emissions decrease as the fuel heating value is reduced. Also note that a decreasing fuel heating value leads to a requirement to increase the fuel supply pressure. Effect of fuel heating value on combustion was investigated, and the reduction in adiabatic flame temperature and laminar flame speed was observed for lower heating value fuels. The successful development program has increased the capability of the SGT-400 standard production dry low emissions (DLE) burner configuration to operate with a range of fuels covering a WI corrected to the normal conditions from 30 MJ/N·m3 to 49 MJ/N·m3. The tests results obtained on the Siemens SGT-400 combustion system provide significant experience for industrial gas turbine burner design for fuel flexibility.
    • Download: (3.396Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Extension of Fuel Flexibility by Combining Intelligent Control Methods for Siemens SGT-400 Dry Low Emission Combustion System

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4256378
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorLiu, Kexin
    contributor authorHubbard, Phill
    contributor authorSadasivuni, Suresh
    contributor authorBulat, Ghenadie
    date accessioned2019-03-17T10:53:59Z
    date available2019-03-17T10:53:59Z
    date copyright9/14/2018 12:00:00 AM
    date issued2019
    identifier issn0742-4795
    identifier othergtp_141_01_011003.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4256378
    description abstractExtension of gas fuel flexibility of a current production SGT-400 industrial gas turbine combustor system is reported in this paper. A SGT-400 engine with hybrid combustion system configuration to meet a customer's specific requirements was string tested. This engine was tested with the gas turbine package driver unit and the gas compressor-driven unit to operate on and switch between three different fuels with temperature-corrected Wobbe index (TCWI) varying between 45 MJ/m3, 38 MJ/m3, and 30 MJ/m3. The alteration of fuel heating value was achieved by injection or withdrawal of N2 into or from the fuel system. The results show that the engine can maintain stable operation on and switching between these three different fuels with fast changeover rate of the heating value greater than 10% per minute without shutdown or change in load condition. High-pressure rig tests were carried out to demonstrate the capabilities of the combustion system at engine operating conditions across a wide range of ambient conditions. Variations of the fuel heating value, with Wobbe index (WI) of 30 MJ/Sm3, 33 MJ/Sm3, 35 MJ/Sm3, and 45 MJ/Sm3 (natural gas, NG) at standard conditions, were achieved by blending NG with CO2 as diluent. Emissions, combustion dynamics, fuel pressure, and flashback monitoring via measurement of burner metal temperatures, were the main parameters used to evaluate the impact of fuel flexibility on combustor performance. Test results show that NOx emissions decrease as the fuel heating value is reduced. Also note that a decreasing fuel heating value leads to a requirement to increase the fuel supply pressure. Effect of fuel heating value on combustion was investigated, and the reduction in adiabatic flame temperature and laminar flame speed was observed for lower heating value fuels. The successful development program has increased the capability of the SGT-400 standard production dry low emissions (DLE) burner configuration to operate with a range of fuels covering a WI corrected to the normal conditions from 30 MJ/N·m3 to 49 MJ/N·m3. The tests results obtained on the Siemens SGT-400 combustion system provide significant experience for industrial gas turbine burner design for fuel flexibility.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExtension of Fuel Flexibility by Combining Intelligent Control Methods for Siemens SGT-400 Dry Low Emission Combustion System
    typeJournal Paper
    journal volume141
    journal issue1
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4040689
    journal fristpage11003
    journal lastpage011003-8
    treeJournal of Engineering for Gas Turbines and Power:;2019:;volume( 141 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian