YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Efficient Generation of Engine Representative Tip Timing Data Based on a Reduced Order Model for Bladed Rotors

    Source: Journal of Engineering for Gas Turbines and Power:;2019:;volume( 141 ):;issue: 001::page 12503
    Author:
    Figaschewsky, Felix
    ,
    Hanschke, Benjamin
    ,
    Kühhorn, Arnold
    DOI: 10.1115/1.4040748
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In modern compressors, the assessment of blade vibration levels as well as health monitoring of the components are fundamental tasks. Traditionally, this assessment is done by the application of strain gauges (SG) to some blades of the assembly. In contrast to SGs, blade tip timing (BTT) offers a contactless monitoring of all blades of a rotor and there is no need of a telemetry system. A major issue in the interpretation of BTT data is the heavily undersampled nature of the signal. Usually, newly developed BTT algorithms are tested with sample data created by simplified structural models neglecting many of the uncertainties and disturbing influences of real applications. This work focuses on the creation of simulated BTT datasets as close as possible to real case measurements. For this purpose, a subset of nominal system modes (SNM) representation of a compressor rotor is utilized. This model is able to include a large number of features present in real measurements, such as mistuning, static blade deflections due to centrifugal loads, aerodynamic damping, and multiple mode resonances. Additionally, manufacturing deviations of the blade geometry, probe positioning errors (PPEs) in the BTT system, and noise in the time of arrivals (TOAs) are captured by the BTT simulation environment. The main advantage of the created data is the possibility to steadily increase the signal complexity. Starting with a “perfect” signal the simulation environment is able to add different uncertainties one after the other. This allows the assessment of the influence of different features occurring in real measurements on the performance and accuracy of the analysis algorithms. Finally, a comparison of simulated BTT data and real data acquired from a rig test is shown to validate the presented approach of BTT data generation.
    • Download: (3.063Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Efficient Generation of Engine Representative Tip Timing Data Based on a Reduced Order Model for Bladed Rotors

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4256358
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorFigaschewsky, Felix
    contributor authorHanschke, Benjamin
    contributor authorKühhorn, Arnold
    date accessioned2019-03-17T10:53:24Z
    date available2019-03-17T10:53:24Z
    date copyright11/14/2018 12:00:00 AM
    date issued2019
    identifier issn0742-4795
    identifier othergtp_141_01_012503.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4256358
    description abstractIn modern compressors, the assessment of blade vibration levels as well as health monitoring of the components are fundamental tasks. Traditionally, this assessment is done by the application of strain gauges (SG) to some blades of the assembly. In contrast to SGs, blade tip timing (BTT) offers a contactless monitoring of all blades of a rotor and there is no need of a telemetry system. A major issue in the interpretation of BTT data is the heavily undersampled nature of the signal. Usually, newly developed BTT algorithms are tested with sample data created by simplified structural models neglecting many of the uncertainties and disturbing influences of real applications. This work focuses on the creation of simulated BTT datasets as close as possible to real case measurements. For this purpose, a subset of nominal system modes (SNM) representation of a compressor rotor is utilized. This model is able to include a large number of features present in real measurements, such as mistuning, static blade deflections due to centrifugal loads, aerodynamic damping, and multiple mode resonances. Additionally, manufacturing deviations of the blade geometry, probe positioning errors (PPEs) in the BTT system, and noise in the time of arrivals (TOAs) are captured by the BTT simulation environment. The main advantage of the created data is the possibility to steadily increase the signal complexity. Starting with a “perfect” signal the simulation environment is able to add different uncertainties one after the other. This allows the assessment of the influence of different features occurring in real measurements on the performance and accuracy of the analysis algorithms. Finally, a comparison of simulated BTT data and real data acquired from a rig test is shown to validate the presented approach of BTT data generation.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEfficient Generation of Engine Representative Tip Timing Data Based on a Reduced Order Model for Bladed Rotors
    typeJournal Paper
    journal volume141
    journal issue1
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4040748
    journal fristpage12503
    journal lastpage012503-9
    treeJournal of Engineering for Gas Turbines and Power:;2019:;volume( 141 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian