YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Improvement of Steam Turbine Stage Efficiency by Controlling Rotor Shroud Leakage Flows—Part II: Effect of Axial Distance Between a Swirl Breaker and a Rotor Shroud on Efficiency Improvement

    Source: Journal of Engineering for Gas Turbines and Power:;2019:;volume( 141 ):;issue: 004::page 41002
    Author:
    Duan, Chongfei
    ,
    Fukushima, Hisataka
    ,
    Segewa, Kiyoshi
    ,
    Shibata, Takanori
    ,
    Fujii, Hidetoshi
    DOI: 10.1115/1.4041648
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The basic principle of a distinct idea to reduce an aerodynamic mixing loss induced by the difference in tangential velocity between mainstream flow and rotor shroud leakage flow is presented in “Part I: Design Concept and Typical Performance of a Swirl Breaker.” When the swirl breaker is installed in the circulating region of leakage flow at the rotor shroud exit cavity, the axial distance between the swirl breaker and the rotor shroud is a crucial factor to trap the leakage flow into the swirl breaker cavity. In Part II, five cases of geometry with different axial distances between the swirl breaker and the rotor shroud, which covered a range for the stage axial distance of actual high and intermediate pressure (HIP) steam turbines, were investigated using a single-rotor computational fluid dynamics (CFD) analysis and verification tests in a 1.5-stage air model turbine. By decreasing the axial distance between the swirl breaker and the rotor shroud, the tangential velocity and the mixing region in the tip side which is influenced by the rotor shroud leakage flow were decreased and the stage efficiency was increased. The case of the shortest axial distance between the swirl breaker and the rotor shroud increased turbine stage efficiency by 0.7% compared to the conventional cavity geometry. In addition, the measured maximum pressure fluctuation in the swirl breaker cavity was only 0.7% of the entire flow pressure. Consequently, both performance characteristics and structural reliability of swirl breaker were verified for application to real steam turbines.
    • Download: (3.298Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Improvement of Steam Turbine Stage Efficiency by Controlling Rotor Shroud Leakage Flows—Part II: Effect of Axial Distance Between a Swirl Breaker and a Rotor Shroud on Efficiency Improvement

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4256276
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorDuan, Chongfei
    contributor authorFukushima, Hisataka
    contributor authorSegewa, Kiyoshi
    contributor authorShibata, Takanori
    contributor authorFujii, Hidetoshi
    date accessioned2019-03-17T10:42:35Z
    date available2019-03-17T10:42:35Z
    date copyright11/1/2018 12:00:00 AM
    date issued2019
    identifier issn0742-4795
    identifier othergtp_141_04_041002.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4256276
    description abstractThe basic principle of a distinct idea to reduce an aerodynamic mixing loss induced by the difference in tangential velocity between mainstream flow and rotor shroud leakage flow is presented in “Part I: Design Concept and Typical Performance of a Swirl Breaker.” When the swirl breaker is installed in the circulating region of leakage flow at the rotor shroud exit cavity, the axial distance between the swirl breaker and the rotor shroud is a crucial factor to trap the leakage flow into the swirl breaker cavity. In Part II, five cases of geometry with different axial distances between the swirl breaker and the rotor shroud, which covered a range for the stage axial distance of actual high and intermediate pressure (HIP) steam turbines, were investigated using a single-rotor computational fluid dynamics (CFD) analysis and verification tests in a 1.5-stage air model turbine. By decreasing the axial distance between the swirl breaker and the rotor shroud, the tangential velocity and the mixing region in the tip side which is influenced by the rotor shroud leakage flow were decreased and the stage efficiency was increased. The case of the shortest axial distance between the swirl breaker and the rotor shroud increased turbine stage efficiency by 0.7% compared to the conventional cavity geometry. In addition, the measured maximum pressure fluctuation in the swirl breaker cavity was only 0.7% of the entire flow pressure. Consequently, both performance characteristics and structural reliability of swirl breaker were verified for application to real steam turbines.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleImprovement of Steam Turbine Stage Efficiency by Controlling Rotor Shroud Leakage Flows—Part II: Effect of Axial Distance Between a Swirl Breaker and a Rotor Shroud on Efficiency Improvement
    typeJournal Paper
    journal volume141
    journal issue4
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4041648
    journal fristpage41002
    journal lastpage041002-9
    treeJournal of Engineering for Gas Turbines and Power:;2019:;volume( 141 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian