YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Vibration-Based Condition Monitoring of Wind Turbine Gearboxes Based on Cyclostationary Analysis

    Source: Journal of Engineering for Gas Turbines and Power:;2019:;volume( 141 ):;issue: 003::page 31026
    Author:
    Mauricio, Alexandre
    ,
    Qi, Junyu
    ,
    Gryllias, Konstantinos
    DOI: 10.1115/1.4041114
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Wind industry experiences a tremendous growth during the last few decades. As of the end of 2016, the worldwide total installed electricity generation capacity from wind power amounted to 486,790 MW, presenting an increase of 12.5% compared to the previous year. Nowadays wind turbine manufacturers tend to adopt new business models proposing total health monitoring services and solutions, using regular inspections or even embedding sensors and health monitoring systems within each unit. Regularly planned or permanent monitoring ensures a continuous power generation and reduces maintenance costs, prompting specific actions when necessary. The core of wind turbine drivetrain is usually a complicated planetary gearbox. One of the main gearbox components which are commonly responsible for the machinery breakdowns are rolling element bearings. The failure signs of an early bearing damage are usually weak compared to other sources of excitation (e.g., gears). Focusing toward the accurate and early bearing fault detection, a plethora of signal processing methods have been proposed including spectral analysis, synchronous averaging and enveloping. Envelope analysis is based on the extraction of the envelope of the signal, after filtering around a frequency band excited by impacts due to the bearing faults. Kurtogram has been proposed and widely used as an automatic methodology for the selection of the filtering band, being on the other hand sensible in outliers. Recently, an emerging interest has been focused on modeling rotating machinery signals as cyclostationary, which is a particular class of nonstationary stochastic processes. Cyclic spectral correlation and cyclic spectral coherence (CSC) have been presented as powerful tools for condition monitoring of rolling element bearings, exploiting their cyclostationary behavior. In this work, a new diagnostic tool is introduced based on the integration of the cyclic spectral coherence (CSC) along a frequency band that contains the diagnostic information. A special procedure is proposed in order to automatically select the filtering band, maximizing the corresponding fault indicators. The effectiveness of the methodology is validated using the National Renewable Energy Laboratory (NREL) wind turbine gearbox vibration condition monitoring benchmarking dataset which includes various faults with different levels of diagnostic complexity.
    • Download: (3.070Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Vibration-Based Condition Monitoring of Wind Turbine Gearboxes Based on Cyclostationary Analysis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4256273
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorMauricio, Alexandre
    contributor authorQi, Junyu
    contributor authorGryllias, Konstantinos
    date accessioned2019-03-17T10:42:30Z
    date available2019-03-17T10:42:30Z
    date copyright11/1/2018 12:00:00 AM
    date issued2019
    identifier issn0742-4795
    identifier othergtp_141_03_031026.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4256273
    description abstractWind industry experiences a tremendous growth during the last few decades. As of the end of 2016, the worldwide total installed electricity generation capacity from wind power amounted to 486,790 MW, presenting an increase of 12.5% compared to the previous year. Nowadays wind turbine manufacturers tend to adopt new business models proposing total health monitoring services and solutions, using regular inspections or even embedding sensors and health monitoring systems within each unit. Regularly planned or permanent monitoring ensures a continuous power generation and reduces maintenance costs, prompting specific actions when necessary. The core of wind turbine drivetrain is usually a complicated planetary gearbox. One of the main gearbox components which are commonly responsible for the machinery breakdowns are rolling element bearings. The failure signs of an early bearing damage are usually weak compared to other sources of excitation (e.g., gears). Focusing toward the accurate and early bearing fault detection, a plethora of signal processing methods have been proposed including spectral analysis, synchronous averaging and enveloping. Envelope analysis is based on the extraction of the envelope of the signal, after filtering around a frequency band excited by impacts due to the bearing faults. Kurtogram has been proposed and widely used as an automatic methodology for the selection of the filtering band, being on the other hand sensible in outliers. Recently, an emerging interest has been focused on modeling rotating machinery signals as cyclostationary, which is a particular class of nonstationary stochastic processes. Cyclic spectral correlation and cyclic spectral coherence (CSC) have been presented as powerful tools for condition monitoring of rolling element bearings, exploiting their cyclostationary behavior. In this work, a new diagnostic tool is introduced based on the integration of the cyclic spectral coherence (CSC) along a frequency band that contains the diagnostic information. A special procedure is proposed in order to automatically select the filtering band, maximizing the corresponding fault indicators. The effectiveness of the methodology is validated using the National Renewable Energy Laboratory (NREL) wind turbine gearbox vibration condition monitoring benchmarking dataset which includes various faults with different levels of diagnostic complexity.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleVibration-Based Condition Monitoring of Wind Turbine Gearboxes Based on Cyclostationary Analysis
    typeJournal Paper
    journal volume141
    journal issue3
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4041114
    journal fristpage31026
    journal lastpage031026-8
    treeJournal of Engineering for Gas Turbines and Power:;2019:;volume( 141 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian