YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Investigations of an Axial Exhaust Diffuser Coupling the Last Stage of a Generic Gas Turbine

    Source: Journal of Engineering for Gas Turbines and Power:;2019:;volume( 141 ):;issue: 003::page 31025
    Author:
    Mihailowitsch, Marius
    ,
    Schatz, Markus
    ,
    Vogt, Damian M.
    DOI: 10.1115/1.4040769
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: It is well known that the last stage of a turbine and the subsequent diffuser should be viewed at and designed as a coupled system rather than as single standalone components. The turbine outlet flow imposes the inlet conditions to the diffuser, whereas the recovered dynamic pressure in the diffuser directly controls the turbine back pressure. With changing operating point, the turbine outflow can vary significantly. This results consequently in large variations of the diffuser performance. A major role in the coupled system of turbine and diffuser can be attributed to the tip leakage flow. While it is desirable to minimize the tip leakage with regard to the turbine, a higher leakage mass flow can often be beneficial for the diffuser performance. As there is currently a trend toward aggressive and hence shorter diffusers which are particularly prone to separation, the question arises where the optimum for this tradeoff problem lies. To investigate the performance in the coupled turbine/diffuser system, a generic last stage with shrouded rotor and axial exhaust diffuser has been designed. The components are representative for heavy duty stationary gas turbine applications. Results are presented for three different operating points representing part-load (PL), design-load (DL), and over-load (OL) condition. Three different seal gap widths are taken into account to control the leakage flow. The results indicate that an operating point-dependent optimum gap width can be found for the coupled system efficiency, whereas the maximum turbine performance is always achieved with a minimum gap width.
    • Download: (1.877Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Investigations of an Axial Exhaust Diffuser Coupling the Last Stage of a Generic Gas Turbine

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4256272
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorMihailowitsch, Marius
    contributor authorSchatz, Markus
    contributor authorVogt, Damian M.
    date accessioned2019-03-17T10:42:29Z
    date available2019-03-17T10:42:29Z
    date copyright11/1/2018 12:00:00 AM
    date issued2019
    identifier issn0742-4795
    identifier othergtp_141_03_031025.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4256272
    description abstractIt is well known that the last stage of a turbine and the subsequent diffuser should be viewed at and designed as a coupled system rather than as single standalone components. The turbine outlet flow imposes the inlet conditions to the diffuser, whereas the recovered dynamic pressure in the diffuser directly controls the turbine back pressure. With changing operating point, the turbine outflow can vary significantly. This results consequently in large variations of the diffuser performance. A major role in the coupled system of turbine and diffuser can be attributed to the tip leakage flow. While it is desirable to minimize the tip leakage with regard to the turbine, a higher leakage mass flow can often be beneficial for the diffuser performance. As there is currently a trend toward aggressive and hence shorter diffusers which are particularly prone to separation, the question arises where the optimum for this tradeoff problem lies. To investigate the performance in the coupled turbine/diffuser system, a generic last stage with shrouded rotor and axial exhaust diffuser has been designed. The components are representative for heavy duty stationary gas turbine applications. Results are presented for three different operating points representing part-load (PL), design-load (DL), and over-load (OL) condition. Three different seal gap widths are taken into account to control the leakage flow. The results indicate that an operating point-dependent optimum gap width can be found for the coupled system efficiency, whereas the maximum turbine performance is always achieved with a minimum gap width.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNumerical Investigations of an Axial Exhaust Diffuser Coupling the Last Stage of a Generic Gas Turbine
    typeJournal Paper
    journal volume141
    journal issue3
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4040769
    journal fristpage31025
    journal lastpage031025-9
    treeJournal of Engineering for Gas Turbines and Power:;2019:;volume( 141 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian