YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Method for Parametric Analysis of Stability Boundaries for Nonlinear Periodic Vibrations of Structures With Contact Interfaces

    Source: Journal of Engineering for Gas Turbines and Power:;2019:;volume( 141 ):;issue: 003::page 31023
    Author:
    Petrov, E. P.
    DOI: 10.1115/1.4040850
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A method for parametric analysis of the stability loss boundary has been developed for periodic regimes of nonlinear forced vibrations for a first time. The method allows parametric frequency-domain calculations of the stability loss together with the vibration amplitudes and design parameter values corresponding to the stability boundaries. The tracing algorithm is applied to obtain the trajectories of stability loss points as functions of design parameters. The parametric stability loss is formulated for cases when (i) the design parameters characterize the properties of nonlinear contact interfaces (e.g., gap, contact stiffness, and friction coefficient); (ii) the design parameters describe linear components of the analyzed structure (e.g., parameters of geometric shape, material, natural frequencies, and modal damping); and (iii) these parameters describe the excitation loads (e.g., their level, distribution or frequency). An approach allowing the multiparametric analysis of stability boundaries is proposed. The method uses the multiharmonic representation of the periodic forced response and aimed at the analysis of realistic gas-turbine structures comprising thousands and millions degrees-of-freedom (DOF). The method can be used for the effective search of isolated branches of the nonlinear solutions and examples of detection and search of the isolated branches are given: for relatively small and for large-scale finite element (FE) models. The efficiency of the method for calculation of the stability boundaries and for the search of isolated branches is demonstrated on simple systems and on a large-scale model of a turbine blade.
    • Download: (3.793Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Method for Parametric Analysis of Stability Boundaries for Nonlinear Periodic Vibrations of Structures With Contact Interfaces

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4256260
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorPetrov, E. P.
    date accessioned2019-03-17T10:40:54Z
    date available2019-03-17T10:40:54Z
    date copyright10/29/2018 12:00:00 AM
    date issued2019
    identifier issn0742-4795
    identifier othergtp_141_03_031023.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4256260
    description abstractA method for parametric analysis of the stability loss boundary has been developed for periodic regimes of nonlinear forced vibrations for a first time. The method allows parametric frequency-domain calculations of the stability loss together with the vibration amplitudes and design parameter values corresponding to the stability boundaries. The tracing algorithm is applied to obtain the trajectories of stability loss points as functions of design parameters. The parametric stability loss is formulated for cases when (i) the design parameters characterize the properties of nonlinear contact interfaces (e.g., gap, contact stiffness, and friction coefficient); (ii) the design parameters describe linear components of the analyzed structure (e.g., parameters of geometric shape, material, natural frequencies, and modal damping); and (iii) these parameters describe the excitation loads (e.g., their level, distribution or frequency). An approach allowing the multiparametric analysis of stability boundaries is proposed. The method uses the multiharmonic representation of the periodic forced response and aimed at the analysis of realistic gas-turbine structures comprising thousands and millions degrees-of-freedom (DOF). The method can be used for the effective search of isolated branches of the nonlinear solutions and examples of detection and search of the isolated branches are given: for relatively small and for large-scale finite element (FE) models. The efficiency of the method for calculation of the stability boundaries and for the search of isolated branches is demonstrated on simple systems and on a large-scale model of a turbine blade.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Method for Parametric Analysis of Stability Boundaries for Nonlinear Periodic Vibrations of Structures With Contact Interfaces
    typeJournal Paper
    journal volume141
    journal issue3
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4040850
    journal fristpage31023
    journal lastpage031023-11
    treeJournal of Engineering for Gas Turbines and Power:;2019:;volume( 141 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian