YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Quantification and Propagation of Uncertainties in Identification of Flame Impulse Response for Thermoacoustic Stability Analysis

    Source: Journal of Engineering for Gas Turbines and Power:;2019:;volume( 141 ):;issue: 002::page 21032
    Author:
    Guo, Shuai
    ,
    Silva, Camilo F.
    ,
    Ghani, Abdulla
    ,
    Polifke, Wolfgang
    DOI: 10.1115/1.4041652
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The thermoacoustic behavior of a combustion system can be determined numerically via acoustic tools such as Helmholtz solvers or network models coupled with a model for the flame dynamic response. Within such a framework, the flame response to flow perturbations can be described by a finite impulse response (FIR) model, which can be derived from large eddy simulation (LES) time series via system identification. However, the estimated FIR model will inevitably contain uncertainties due to, e.g., the statistical nature of the identification process, low signal-to-noise ratio, or finite length of time series. Thus, a necessary step toward reliable thermoacoustic stability analysis is to quantify the impact of uncertainties in FIR model on the growth rate of thermoacoustic modes. There are two practical considerations involved in this topic. First, how to efficiently propagate uncertainties from the FIR model to the modal growth rate of the system, considering it is a high dimensional uncertainty quantification (UQ) problem? Second, since longer computational fluid dynamics (CFD) simulation time generally leads to less uncertain FIR model identification, how to determine the length of the CFD simulation required to obtain satisfactory confidence? To address the two issues, a dimensional reduction UQ methodology called “Active subspace approach (ASA)” is employed in the present study. For the first question, ASA is applied to exploit a low-dimensional approximation of the original system, which allows accelerated UQ analysis. Good agreement with Monte Carlo analysis demonstrates the accuracy of the method. For the second question, a procedure based on ASA is proposed, which can serve as an indicator for terminating CFD simulation. The effectiveness of the procedure is verified in the paper.
    • Download: (2.012Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Quantification and Propagation of Uncertainties in Identification of Flame Impulse Response for Thermoacoustic Stability Analysis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4256216
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorGuo, Shuai
    contributor authorSilva, Camilo F.
    contributor authorGhani, Abdulla
    contributor authorPolifke, Wolfgang
    date accessioned2019-03-17T10:34:55Z
    date available2019-03-17T10:34:55Z
    date copyright10/23/2018 12:00:00 AM
    date issued2019
    identifier issn0742-4795
    identifier othergtp_141_02_021032.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4256216
    description abstractThe thermoacoustic behavior of a combustion system can be determined numerically via acoustic tools such as Helmholtz solvers or network models coupled with a model for the flame dynamic response. Within such a framework, the flame response to flow perturbations can be described by a finite impulse response (FIR) model, which can be derived from large eddy simulation (LES) time series via system identification. However, the estimated FIR model will inevitably contain uncertainties due to, e.g., the statistical nature of the identification process, low signal-to-noise ratio, or finite length of time series. Thus, a necessary step toward reliable thermoacoustic stability analysis is to quantify the impact of uncertainties in FIR model on the growth rate of thermoacoustic modes. There are two practical considerations involved in this topic. First, how to efficiently propagate uncertainties from the FIR model to the modal growth rate of the system, considering it is a high dimensional uncertainty quantification (UQ) problem? Second, since longer computational fluid dynamics (CFD) simulation time generally leads to less uncertain FIR model identification, how to determine the length of the CFD simulation required to obtain satisfactory confidence? To address the two issues, a dimensional reduction UQ methodology called “Active subspace approach (ASA)” is employed in the present study. For the first question, ASA is applied to exploit a low-dimensional approximation of the original system, which allows accelerated UQ analysis. Good agreement with Monte Carlo analysis demonstrates the accuracy of the method. For the second question, a procedure based on ASA is proposed, which can serve as an indicator for terminating CFD simulation. The effectiveness of the procedure is verified in the paper.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleQuantification and Propagation of Uncertainties in Identification of Flame Impulse Response for Thermoacoustic Stability Analysis
    typeJournal Paper
    journal volume141
    journal issue2
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4041652
    journal fristpage21032
    journal lastpage021032-10
    treeJournal of Engineering for Gas Turbines and Power:;2019:;volume( 141 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian