YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Investigation on the Stall Inception Circumferential Position and Stall Process Behavior in a Centrifugal Compressor With Volute

    Source: Journal of Engineering for Gas Turbines and Power:;2019:;volume( 141 ):;issue: 002::page 21030
    Author:
    Zhang, Hanzhi
    ,
    Yang, Ce
    ,
    Yang, Dengfeng
    ,
    Wang, Wenli
    ,
    Yang, Changmao
    ,
    Qi, Mingxu
    DOI: 10.1115/1.4041108
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The present paper numerically and experimentally investigates the stall inception mechanisms in a centrifugal compressor with volute. Current studies about stall inception pay more attention on the axial compressors than the centrifugal compressors; especially, the circumferential position of stall inception onset and the stall process in the centrifugal compressor with asymmetric volute structure have not been studied sufficiently yet. In this work, the compressor performance experiment was conducted and the casing wall static pressure distributions were obtained by 72 static pressure sensors first. Then, the full annular unsteady simulations were carried out at different stable operating points, and the time-averaged static pressure distributions were compared with the experimental results. Finally, the stall process of the compressor was investigated by unsteady simulations in detail. Results show that the stall inception onset is determined by the impeller leading edge (LE) spillage flow, and the occurrence time of trailing edge (TE) backflow is prior to the LE spillage. The nonuniform static pressure circumferential distribution at impeller outlet induced by volute tongue causes the two stall inception regions locating at certain circumferential positions, which are 120 deg and 300 deg circumferential positions at impeller LE, corresponding to the circumferential static pressure peak (PP) and bulge regions at impeller outlet, respectively. In detail, at rotor revolution 2.86, a small disturbance that the incoming/tip clearance flow interface is perpendicular to axial direction occurs at 120 deg position, but this disturbance did not cause the compressor stall. Then at revolution 7, the first stall inception zone (spillage region) occurs at 120 deg position, causing the compressor stall with positive pressure ratio performance. At approximately revolution 23, the second stall inception zone occurs at about 300 deg position; however, both the intensity and size of this stall inception zone are smaller than those of the first stall inception zone. These two stall inception zones are not moving along circumferential direction because the stall inception circumferential position is dominated by the impeller outlet static pressure distribution. Even then, the obvious low frequency signals appear after the spillage crossing two blade LEs, because at this moment, the spillage vortex caused by the tip leakage flow begins to shed. However, due to the asymmetric structure limitation, this vortex cannot move across full annular. Furthermore, the spillage vortexes cause the local low static pressure zone ahead of blade LE in the centrifugal compressor with volute, suggesting that the spillage can be predicted by the steady casing wall static pressure measuring. The development of blockage zones at impeller LE is also investigated quantitatively by analyzing the stall blockage effect.
    • Download: (5.021Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Investigation on the Stall Inception Circumferential Position and Stall Process Behavior in a Centrifugal Compressor With Volute

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4256185
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorZhang, Hanzhi
    contributor authorYang, Ce
    contributor authorYang, Dengfeng
    contributor authorWang, Wenli
    contributor authorYang, Changmao
    contributor authorQi, Mingxu
    date accessioned2019-03-17T10:31:52Z
    date available2019-03-17T10:31:52Z
    date copyright10/18/2018 12:00:00 AM
    date issued2019
    identifier issn0742-4795
    identifier othergtp_141_02_021030.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4256185
    description abstractThe present paper numerically and experimentally investigates the stall inception mechanisms in a centrifugal compressor with volute. Current studies about stall inception pay more attention on the axial compressors than the centrifugal compressors; especially, the circumferential position of stall inception onset and the stall process in the centrifugal compressor with asymmetric volute structure have not been studied sufficiently yet. In this work, the compressor performance experiment was conducted and the casing wall static pressure distributions were obtained by 72 static pressure sensors first. Then, the full annular unsteady simulations were carried out at different stable operating points, and the time-averaged static pressure distributions were compared with the experimental results. Finally, the stall process of the compressor was investigated by unsteady simulations in detail. Results show that the stall inception onset is determined by the impeller leading edge (LE) spillage flow, and the occurrence time of trailing edge (TE) backflow is prior to the LE spillage. The nonuniform static pressure circumferential distribution at impeller outlet induced by volute tongue causes the two stall inception regions locating at certain circumferential positions, which are 120 deg and 300 deg circumferential positions at impeller LE, corresponding to the circumferential static pressure peak (PP) and bulge regions at impeller outlet, respectively. In detail, at rotor revolution 2.86, a small disturbance that the incoming/tip clearance flow interface is perpendicular to axial direction occurs at 120 deg position, but this disturbance did not cause the compressor stall. Then at revolution 7, the first stall inception zone (spillage region) occurs at 120 deg position, causing the compressor stall with positive pressure ratio performance. At approximately revolution 23, the second stall inception zone occurs at about 300 deg position; however, both the intensity and size of this stall inception zone are smaller than those of the first stall inception zone. These two stall inception zones are not moving along circumferential direction because the stall inception circumferential position is dominated by the impeller outlet static pressure distribution. Even then, the obvious low frequency signals appear after the spillage crossing two blade LEs, because at this moment, the spillage vortex caused by the tip leakage flow begins to shed. However, due to the asymmetric structure limitation, this vortex cannot move across full annular. Furthermore, the spillage vortexes cause the local low static pressure zone ahead of blade LE in the centrifugal compressor with volute, suggesting that the spillage can be predicted by the steady casing wall static pressure measuring. The development of blockage zones at impeller LE is also investigated quantitatively by analyzing the stall blockage effect.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleInvestigation on the Stall Inception Circumferential Position and Stall Process Behavior in a Centrifugal Compressor With Volute
    typeJournal Paper
    journal volume141
    journal issue2
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4041108
    journal fristpage21030
    journal lastpage021030-12
    treeJournal of Engineering for Gas Turbines and Power:;2019:;volume( 141 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian