YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Hermetically Sealed Squeeze Film Damper for Operation in Oil-Free Environments

    Source: Journal of Engineering for Gas Turbines and Power:;2019:;volume( 141 ):;issue: 002::page 22503
    Author:
    Ertas, Bugra
    ,
    Delgado, Adolfo
    DOI: 10.1115/1.4041520
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The following work advances a new concept for a hermetically sealed squeeze film damper (HSFD), which does not require an open-flow lubrication system. The hermetically sealed concept utilizes a submersed plunger within a contained fluidic cavity filled with incompressible fluid and carefully controlled end plate clearances to generate high levels of viscous damping. Although the application space for a hermetic damper can be envisioned to be quite broad, the context here will target the use of this device as a rotordynamic bearing support damper in flexibly mounted gas bearing systems. The effort focused on identifying the stiffness and damping behavior of the damper while varying test parameters such as excitation frequency, vibration amplitude, and end plate clearance. To gain further insight to the damper behavior, key dynamic pressure measurements in the damper land were used for identifying the onset conditions for squeeze film cavitation. The HSFD performance is compared to existing gas bearing support dampers and a conventional open-flow squeeze film dampers (SFD) used in turbomachinery. The damper concept yields high viscous damping coefficients an order of magnitude larger than existing oil-free gas bearing supports dampers and shows comparable damping levels to current state of the art open-flow SFD. The force coefficients were shown to contribute frequency-dependent stiffness and damping coefficients while exhibiting amplitude independent behavior within operating regimes without cavitation. Finally, using experimentally based force density calculations, the data revealed threshold cavitation velocities, approximated for the three end seal clearance cases. To complement the experimental work, a Reynolds-based fluid flow model was developed and is compared to the HSFD damping and stiffness results.
    • Download: (9.901Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Hermetically Sealed Squeeze Film Damper for Operation in Oil-Free Environments

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4256132
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorErtas, Bugra
    contributor authorDelgado, Adolfo
    date accessioned2019-03-17T10:26:30Z
    date available2019-03-17T10:26:30Z
    date copyright10/15/2018 12:00:00 AM
    date issued2019
    identifier issn0742-4795
    identifier othergtp_141_02_022503.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4256132
    description abstractThe following work advances a new concept for a hermetically sealed squeeze film damper (HSFD), which does not require an open-flow lubrication system. The hermetically sealed concept utilizes a submersed plunger within a contained fluidic cavity filled with incompressible fluid and carefully controlled end plate clearances to generate high levels of viscous damping. Although the application space for a hermetic damper can be envisioned to be quite broad, the context here will target the use of this device as a rotordynamic bearing support damper in flexibly mounted gas bearing systems. The effort focused on identifying the stiffness and damping behavior of the damper while varying test parameters such as excitation frequency, vibration amplitude, and end plate clearance. To gain further insight to the damper behavior, key dynamic pressure measurements in the damper land were used for identifying the onset conditions for squeeze film cavitation. The HSFD performance is compared to existing gas bearing support dampers and a conventional open-flow squeeze film dampers (SFD) used in turbomachinery. The damper concept yields high viscous damping coefficients an order of magnitude larger than existing oil-free gas bearing supports dampers and shows comparable damping levels to current state of the art open-flow SFD. The force coefficients were shown to contribute frequency-dependent stiffness and damping coefficients while exhibiting amplitude independent behavior within operating regimes without cavitation. Finally, using experimentally based force density calculations, the data revealed threshold cavitation velocities, approximated for the three end seal clearance cases. To complement the experimental work, a Reynolds-based fluid flow model was developed and is compared to the HSFD damping and stiffness results.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleHermetically Sealed Squeeze Film Damper for Operation in Oil-Free Environments
    typeJournal Paper
    journal volume141
    journal issue2
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4041520
    journal fristpage22503
    journal lastpage022503-9
    treeJournal of Engineering for Gas Turbines and Power:;2019:;volume( 141 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian