YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nonlinear Analysis of Rotordynamic Fluid Forces in the Annular Plain Seal by Using Extended Bulk-Flow Analysis: Influence of Static Eccentricity and Whirling Amplitude

    Source: Journal of Engineering for Gas Turbines and Power:;2019:;volume( 141 ):;issue: 002::page 21017
    Author:
    Yamada, Koya
    ,
    Ikemoto, Atsushi
    ,
    Inoue, Tsuyoshi
    ,
    Uchiumi, Masaharu
    DOI: 10.1115/1.4041128
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Rotor-dynamic fluid force (RD fluid force) of turbomachinery is one of the causes of the shaft vibration problem. Bulk flow theory is the method for analyzing this RD fluid force, and it has been widely used in the design stage of machine. The conventional bulk flow theory has been carried out under the assumption of concentric circular shaft's orbit with a small amplitude. However, actual rotating machinery's operating condition often does not hold this assumption, for example, existence of static load on the machinery causes static eccentricity. In particular, when such a static eccentricity is significant, the nonlinearity of RD fluid force may increase and become non-negligible. Therefore, conventional bulk flow theory is not applicable for the analysis of the RD fluid force in such a situation. In this paper, the RD fluid force of the annular plain seal in the case of circular whirling orbit with static eccentricity is investigated. The case with both the significant static eccentricity and the moderate whirling amplitude is considered, and the perturbation analysis of the bulk-flow theory is extended to investigate the RD fluid force in such cases. In this analysis, the assumption of the perturbation solution is extended to both static terms and whirling terms up to the third order. Then, the additional terms are caused by the coupling of these terms through nonlinearity, and these three kinds of terms are considered in the extended perturbation analysis of the bulk flow theory. As a result, a set of nonlinear analytical equations of the extended perturbation analysis of the bulk flow theory, for the case with both the significant static eccentricity and the moderate whirling amplitude, is deduced. The RD fluid force for such cases is analyzed, and the occurrence of constant component, backward synchronous component, and super-harmonic components in the RD fluid force is observed in addition to the forward synchronous component. The representation of RD fluid force coefficients (RD coefficients) are modified for the case with significant static eccentricity, and the variation of RD fluid force coefficients for the magnitude of static eccentricity is analyzed. These analytical results of RD fluid force and its RD coefficients are compared with the numerical results using finite difference analysis and experimental results. As a result, the validity of the extended perturbation analysis of the bulk-flow theory for the case with both the significant static eccentricity and the moderate whirling amplitude is confirmed.
    • Download: (1.686Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nonlinear Analysis of Rotordynamic Fluid Forces in the Annular Plain Seal by Using Extended Bulk-Flow Analysis: Influence of Static Eccentricity and Whirling Amplitude

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4256017
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorYamada, Koya
    contributor authorIkemoto, Atsushi
    contributor authorInoue, Tsuyoshi
    contributor authorUchiumi, Masaharu
    date accessioned2019-03-17T10:14:25Z
    date available2019-03-17T10:14:25Z
    date copyright10/4/2018 12:00:00 AM
    date issued2019
    identifier issn0742-4795
    identifier othergtp_141_02_021017.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4256017
    description abstractRotor-dynamic fluid force (RD fluid force) of turbomachinery is one of the causes of the shaft vibration problem. Bulk flow theory is the method for analyzing this RD fluid force, and it has been widely used in the design stage of machine. The conventional bulk flow theory has been carried out under the assumption of concentric circular shaft's orbit with a small amplitude. However, actual rotating machinery's operating condition often does not hold this assumption, for example, existence of static load on the machinery causes static eccentricity. In particular, when such a static eccentricity is significant, the nonlinearity of RD fluid force may increase and become non-negligible. Therefore, conventional bulk flow theory is not applicable for the analysis of the RD fluid force in such a situation. In this paper, the RD fluid force of the annular plain seal in the case of circular whirling orbit with static eccentricity is investigated. The case with both the significant static eccentricity and the moderate whirling amplitude is considered, and the perturbation analysis of the bulk-flow theory is extended to investigate the RD fluid force in such cases. In this analysis, the assumption of the perturbation solution is extended to both static terms and whirling terms up to the third order. Then, the additional terms are caused by the coupling of these terms through nonlinearity, and these three kinds of terms are considered in the extended perturbation analysis of the bulk flow theory. As a result, a set of nonlinear analytical equations of the extended perturbation analysis of the bulk flow theory, for the case with both the significant static eccentricity and the moderate whirling amplitude, is deduced. The RD fluid force for such cases is analyzed, and the occurrence of constant component, backward synchronous component, and super-harmonic components in the RD fluid force is observed in addition to the forward synchronous component. The representation of RD fluid force coefficients (RD coefficients) are modified for the case with significant static eccentricity, and the variation of RD fluid force coefficients for the magnitude of static eccentricity is analyzed. These analytical results of RD fluid force and its RD coefficients are compared with the numerical results using finite difference analysis and experimental results. As a result, the validity of the extended perturbation analysis of the bulk-flow theory for the case with both the significant static eccentricity and the moderate whirling amplitude is confirmed.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNonlinear Analysis of Rotordynamic Fluid Forces in the Annular Plain Seal by Using Extended Bulk-Flow Analysis: Influence of Static Eccentricity and Whirling Amplitude
    typeJournal Paper
    journal volume141
    journal issue2
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4041128
    journal fristpage21017
    journal lastpage021017-8
    treeJournal of Engineering for Gas Turbines and Power:;2019:;volume( 141 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian