Large Eddy Simulation and Experimental Analysis of Combustion Dynamics in a Gas Turbine BurnerSource: Journal of Engineering for Gas Turbines and Power:;2019:;volume( 141 ):;issue: 007::page 71015Author:Moëll, Daniel
,
Lantz, Andreas
,
Bengtson, Karl
,
Lörstad, Daniel
,
Lindholm, Annika
,
Bai, Xue-Song
DOI: 10.1115/1.4042473Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: Large eddy simulations (LES) and experiments (planar laser-induced fluorescence of the hydroxyl radical (OH-PLIF) and pressure transducer) have been carried out on a gas turbine burner fitted to an atmospheric combustion rig. This burner, from the Siemens SGT-800 gas turbine, is a low NOx, partially premixed burner, where preheat air temperature, flame temperature, and pressure drop across the burner are kept similar to engine full load conditions. The large eddy simulations are based on a flamelet-generated manifold (FGM) approach for representing the chemistry and the Smagorinsky model for subgrid turbulence. The experimental data and simulation data are in good agreement, both in terms of time averaged and time-resolved quantities. From the experiments and LES, three bands of frequencies of pressure fluctuations with high power spectral density are found in the combustion chamber. The first two bands are found to be axial pressure modes, triggered by coherent flow motions from the burner, such as the flame stabilization location and the precessing vortex core (PVC). The third band is found to be a cross flow directional mode interacting with two of the four combustion chamber walls in the square section of the combustion chamber, triggered from general flow motions. This study shows that LES of real gas turbine components is feasible and that the results give important insight into the flow, flame, and acoustic interactions in a specific combustion system.
|
Show full item record
contributor author | Moëll, Daniel | |
contributor author | Lantz, Andreas | |
contributor author | Bengtson, Karl | |
contributor author | Lörstad, Daniel | |
contributor author | Lindholm, Annika | |
contributor author | Bai, Xue-Song | |
date accessioned | 2019-03-17T09:55:15Z | |
date available | 2019-03-17T09:55:15Z | |
date copyright | 2/11/2019 12:00:00 AM | |
date issued | 2019 | |
identifier issn | 0742-4795 | |
identifier other | gtp_141_07_071015.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4255795 | |
description abstract | Large eddy simulations (LES) and experiments (planar laser-induced fluorescence of the hydroxyl radical (OH-PLIF) and pressure transducer) have been carried out on a gas turbine burner fitted to an atmospheric combustion rig. This burner, from the Siemens SGT-800 gas turbine, is a low NOx, partially premixed burner, where preheat air temperature, flame temperature, and pressure drop across the burner are kept similar to engine full load conditions. The large eddy simulations are based on a flamelet-generated manifold (FGM) approach for representing the chemistry and the Smagorinsky model for subgrid turbulence. The experimental data and simulation data are in good agreement, both in terms of time averaged and time-resolved quantities. From the experiments and LES, three bands of frequencies of pressure fluctuations with high power spectral density are found in the combustion chamber. The first two bands are found to be axial pressure modes, triggered by coherent flow motions from the burner, such as the flame stabilization location and the precessing vortex core (PVC). The third band is found to be a cross flow directional mode interacting with two of the four combustion chamber walls in the square section of the combustion chamber, triggered from general flow motions. This study shows that LES of real gas turbine components is feasible and that the results give important insight into the flow, flame, and acoustic interactions in a specific combustion system. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Large Eddy Simulation and Experimental Analysis of Combustion Dynamics in a Gas Turbine Burner | |
type | Journal Paper | |
journal volume | 141 | |
journal issue | 7 | |
journal title | Journal of Engineering for Gas Turbines and Power | |
identifier doi | 10.1115/1.4042473 | |
journal fristpage | 71015 | |
journal lastpage | 071015-10 | |
tree | Journal of Engineering for Gas Turbines and Power:;2019:;volume( 141 ):;issue: 007 | |
contenttype | Fulltext |